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Kinematic Analysis and Evaluation of Wheelchair Mounted Robotic Arms 
 

Edward Jacob McCaffrey 

Abstract 

ABSTRACT 

 

The goal of this thesis is the kinematic analysis and evaluation of wheelchair 

mounted robotic arms. More specifically, to address the kinematics of the wheelchair 

mounted robotic arm (WMRA) with respect to its ability to reach positions commonly 

required by an assistive device in activities of daily living (ADL).  

A robotic manipulator attached to a power wheelchair could enhance the 

manipulation functions of an individual with a disability. In this thesis, a procedure is 

developed for the kinematic analysis and evaluation of a wheelchair mounted robotic 

arm. In addition to developing the analytical procedure, the manipulator is evaluated, and 

design recommendations and insights are obtained.  

At this time there exist both commercially-available and industrial wheelchair 

mountable robotic manipulators. The commercially-available manipulators (of which two 

will be addressed in this research) have been designed specifically for use in 

rehabilitation robotics. In contrast, industrial robotic manipulators are designed for speed, 

precision, and endurance. These traits are not required in assistive robots and can actually 

be dangerous to the operator if mounted onto a wheelchair. Manipulators to be used as 

WMRAs must be designed specifically for assistive functions in order to be utilized as a 

wheelchair mounted robotic arm. 

In an effort to evaluate two commercial manipulators, the procedure for kinematic 

analysis is applied to each manipulator. Design recommendations with regard to each 

device are obtained. This method will benefit the researchers by providing a standardized 
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procedure for kinematic analysis of WMRAs that is capable of evaluating independent 

designs.
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Chapter One    Introduction 

Chapter One    Introduction 

 

1.1   Motivation 

   A wheelchair mounted robotic arm can enhance the manipulability functions of 

people with disabilities. To better understand the effectiveness of a robotic arm, it must 

be analyzed with respect to its kinematics and the workspace in which it operates. 

Kinematics is defined as the relationship between the positions, velocities, and 

accelerations of the links of a robotic arm.  

   Data from the US Census Bureau Statistical Brief of 1993 showed that over 34 

million Americans had difficulty performing functional activities1. Of this number, over 

24 million were considered to have severe disabilities. Every year more and more people 

become disabled in a way which minimizes their use of upper extremities. These can be 

motor dysfunctions due to accidents, disease, or genetic predispositions.  

     The field of Rehabilitation Robotics has been created in an attempt to increase the 

quality of life and to assist in activities of daily living.  Rehabilitation Robotics addresses 

assistive technologies as well as the traditional definition of rehabilitation: increasing or 

expanding the individual’s mental, physical, or sensory capabilities. The primary focus of 

Rehabilitation Engineering2 and robotics is to increase the quality of life of individuals 

through increasing functional independence and decreasing the costs associated with the 

assistance required by the individual. 

Robotic aids used in these applications vary from advanced limb orthosis to 

robotic arms. These devices can help in everyday activities for persons with severe 

physical disabilities limiting their ability to manipulate objects by reducing their 

dependency on caregivers. 
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In the case of spinal injury or dysfunction, these aids are most appropriate for 

individuals with spinal deficiencies ranging from cervical spine vertebrae 3 through 

cervical spine vertebrae 5. Below the cervical spine vertebrae 5, individuals often can be 

served with simpler, more traditional assistive technology. Spinal fractures above cervical 

spine vertebrae 3 often require other medical necessities such as a respirator and daily 

attendants, thereby minimizing the need for assistive devices. Individuals with 

neuromuscular deficiencies such as muscular sclerosis can benefit from these robotic 

devices.  

Individuals that require mobility assist devices such as a power wheelchair can 

benefit from various robotic devices because the power wheelchair provides a platform 

with which to mount the device as well as a power supply, using the wheelchair’s 

batteries. There have been several attempts in the past to create commercially-viable 

wheelchair mounted robotic arms. Currently there are only two commercially available 

WMRAs available, the Manus (Exact Dynamics, Inc., Netherlands) and the Raptor 

(Applied Resources, Inc, NJ USA). 

 

1.2 Objectives 

The focus of this thesis is to analyze and evaluate WMRAs. To complete the analysis, 

an analytic procedure must be designed to systematically study the effectiveness of 

WMRAs. The procedure is executed and the manipulator is then evaluated using criteria 

specific to rehabilitation applications. A completed evaluation can provide design 

recommendations and possibly insights into design modifications or new manipulator 

geometries which better fulfill the specific needs of a rehabilitation robotic manipulator.  

The objectives of this thesis are the following: 

• Create a procedure for quantitative kinematic analysis  

• Evaluate the Manus and Raptor arm using this procedure 

• Obtain design recommendations and insights based on the evaluation 
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Chapter Two    Background 
Chapter Two    Background 

 

2.1  History of Rehabilitation Robotics 

There have been various attempts over the years to create robotic assistants for 

individuals with various levels of disabilities. For over 30 years, research has progressed 

in the field with only partial commercial success. An early attempt at telemanipulators 

was done at the Case Institute of Technology during the early 1960’s. The Case system3 

was a floor-mounted, powered exoskeleton. It was controlled by an operator who wore a 

head-mounted light source which triggered light sensors in the environment. By looking 

at specific points in the room, the operator could trigger the light sensors and initiate one 

of several preprogrammed gestures which were stored on magnetic tape. A later 

development allowed for Cartesian movement and direct control of individual joints 

along with myoelectric signals for velocity control.  

One of the first attempts at rehabilitation robotics included the Rancho “Golden” 

arm 4 designed in 1969 at Rancho Los Amigos Hospital in Downy, California. The arm 

was an electrically-driven 6 Degree Of Freedom (DOF) robotic arm which mounted to a 

powered wheelchair and was controlled at the joint level by an array of tongue-operated 

switches. Further discussions on the topic of the controllability of the arm commented on 

both successes and failures of the design. The successes with the project can be attributed 

to the important role that proprioceptive feedback plays in the control of a persons own 

extremities5. These pioneering research projects provided a framework for future 

development.  

Assistive robotics can be grouped into one of three categories: 

• Workstation robots which operate in stationary, well-structured environments  

• Mobile assistive robots which travel about the room and have a manipulator arm 
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• Wheelchair mounted robotic arms which mount a manipulator arm onto the 

individual’s wheelchair to provide assistance throughout the day 

 

2.2 Workstation-Based Systems 

The very first rehabilitation robotics applications focused on using commercially-

available industrial manipulators and modifying them for rehabilitation applications.  An 

example of these manipulators is the PUMA 250 shown in Figure 2.1. A factor which 

limits the use of industrial robotic arms in rehabilitation is the basic difference in 

operational requirements. Industrial arms are designed to work at high speed in an 

environment where there are no humans. This reason alone would limit their use for 

reasons of safety of the operator. For applications in a human-intensive workspace, 

assistive robotic arms need to be mechanically limited to low velocity and accelerations. 

A more modern version of this workstation approach is the RAID (Robotic 

Assistance in Daily Living) system which will be discussed in more detail later.  

 

Figure 2.1 : Puma 250 Arm 

The Robotic Aid Project6 was an attempt to create a system for users with 

quadriplegia. The project was an integration of a PUMA 250 industrial manipulator arm, 

microprocessor, multi-line monochrome display and speech synthesis and recognition 

systems. Limitations with the speech-recognition systems and computational power of 
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the day restricted the success of the program. The processing ability of the contemporary 

computers did not allow for real-time reverse kinematics of the arm. This limited the arm 

to merely replaying preprogrammed actions. Individual joints of the arm could be 

manipulated but coordinated, real-time multi-joint maneuvers were impossible.   

As more application-specific robotic arms and computers with increased 

computational power became available, arms with controllers could now be mounted 

onto mobile platforms. At first these systems were simply rolling bases which then 

increased in complexity and degrees of freedom to include powered mobile robots. 

Handy-17 is a robotic arm mounted to a non-powered wheeled base to assist in 

very specific activities of daily living (ADL). Handy-1 was developed in 1988 to provide 

persons with severe disabilities assistance at mealtimes. Since its initial introduction the 

unit has expanded capabilities and is now capable of providing assistance in a broader 

number of activities of daily living (ADL). Handy-1 is capable of assisting individuals 

with personal hygiene, eating and drinking, and the application of make-up. During user 

trials, women specifically asked if the unit would be capable of applying cosmetic 

products. Shortly after the trial, the design was upgraded with a new tray and gripper 

accessory. Each ADL task has a specific tray to accomplish its goal. Handy-1 is shown in 

Figure 2.2 and is based on a 5 DOF lightly modified industrial manipulator. 

 

Figure 2.2 : Handy-1 

 In the feeding mode the operator controls the robot through an interface that uses 

lights which move across the available food trays, and a button that selects the item 
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desired. Once the button is pressed, the robot scoops up the selected food and brings it to 

a predetermined place near the operator’s mouth. Once the user has consumed the food, 

the operator presses the button again and the robot returns to the food selection mode. 

This process is repeated until the operator is finished.  

This assistive device does not eliminate the need for a personal assistant but 

allows for individuals to have an increased level of self-sufficiency. In user trials almost 

invariably all the users believed the device to significantly increase their quality of life. 

An advancement of the technology of Handy-1 is being explored with the Robotic Aid to 

Independent Living8 (RAIL) project. RAIL improves upon the Handy-1 design by 

incorporating a new controller for better manipulator control, a 3D simulation tool for 

modeling virtual scenarios and attachment of sensors to assist set up and position error 

determination. 

The Wessex robot 9(Bath Institute of Medical Engineering) is a trolley-mounted 

mobile robot of modified SCARA geometry. A SCARA arm has two revolute joints in 

the horizontal plane, allowing it to reach any point within a horizontal planar workspace 

defined by two concentric circles. In modified SCARA configuration, most of the joints 

operate in the horizontal plane. All vertical movement is achieved through the use of a 

single vertical actuator.  

The Wessex robot suffered from several design shortcomings. One example was 

its limited manipulator reach. The manipulator was designed to grasp only items on a 

tabletop. Because of this limitation, it was unable to pickup items off the ground. The 

trolley was not powered and was pushed into location by the daily assistant.  

In user trials the operator felt limited by the number of programs which it could 

store and that the trolley was not powered. The user felt that if the trolley were able to be 

driven by remote control it could be used to retrieve or manipulate objects within the 

same room. This could allow the user to adjust the thermostat or retrieve a drink from an 

attached kitchen.  

The RAID workstation10 shown in Figure 2.3 was designed to be a workstation 

assistive robot system. It is comprised of a 6 DOF robotic arm mounted onto a linear 
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track in a well-controlled environment.  In the figure the manipulator can be seen near the 

top of the shelf in the center of the cabinet.  

 

Figure 2.3 : RAID Workstation 

The RAID system provides benefits that are enhanced by the formal structure provided 

by a workstation environment. This organization allows the manipulator arm to 

repeatedly move and acquire items needed by the operator using preprogrammed 

functions and routines. At this time the RAID system is currently under evaluation in 

Europe.  

The Robotic Assistive Device11 , shown in Figure 2.4, is a robotic arm currently 

under development by the Neil Squire Foundation in Vancouver, Canada. The RAD is a 6 

DOF workspace mountable manipulator that uses a serial port computer interface. The 

manipulator is controlled through a graphical user interface (GUI) utilizing icons to 

symbolize predefined tasks. The system consist of several modules which when 

combined create an arm with a cylindrical reach of approximately 55” and a height of 

110”.  The arm can be mounted on various surfaces and has good repeatability at 0.12” 

and relatively large payload capacity of 9.5 lbs. Most rehabilitation specific manipulators 

have maximum payloads of 5 pounds or less. 
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Figure 2.4 : Robot Assistive Device 

 

The ProVAR 12(Stanford, CA) is a system based on a Puma 260 robotic arm 

designed to operate in a vocational environment. The ProVAR manipulator shown in 

Figure 2.5 is the next generation of the DeVAR system and expands upon the previous 

research by reducing operating costs and increasing overall usefulness.  

 

 

Figure 2.5 : ProVAR System 

 

The ProVAR system uses a web-based virtual environment to model the 

functionality of the manipulator. In this way the operator can examine potential arm 

movements for a given task, and if the simulation is successful, the action can be 
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initiated. In this way, the actions of the arm and its interactions within its workspace can 

be seen before any action is taken. The primary goals for ProVAR are more functionality 

per dollar, easier operator control, and higher system reliability compared with the 

previous generation of vocational assistive robots. 

 

2.3 Mobile Systems   

Mobile systems are capable of assisting individuals with disabilities. These 

systems include a mobile base, various sensors and a manipulator arm. An early version 

of one such system is the Mobile Vocational Assistant Robot13 (MoVAR). MoVAR, 

shown in Figure 2.6, utilizes an omni-directional mobile platform mounting a PUMA-250 

robotic arm as well as several sensors including a remote viewing camera, force and 

gripper proximity sensors.  

 

 

Figure 2.6 : MoVAR 

 

MoVAID is an advanced version of the MoVAR system, designed specifically for 

home use. MoVAID improves upon the previous model by applying the lessons learned 

in laboratory testing to assist in common tasks around the home such as cleaning and 

food preparation.  MoVAID incorporates a variety of sensing devices both mounted to 

the manipulator and the base. In Figure 2.7 MoVAID can be seen along with the various 
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sensors that are located on the manipulator arm. Sensors mounted to the first link of the 

arm include a pair of cameras used for stereo vision and a laser localization system used 

in task execution.   

The MoVAID system uses active beacons positioned within the room that provide 

reference data to determine its location and orientation.  In addition to position detection, 

the unit also has ultrasonic range detectors and an active bumper that disables the device 

should an impact occur.  

 

Figure 2.7 : MoVAID 

 

The robotic arm used by MoVAID has 8 DOF and a three-fingered gripper with 

two degrees of freedom. The gripper was originally designed as a prosthetic device 

specifically to have excellent dexterity. The increased agility provided by the gripper 

over more traditional end-effectors allows MoVAID to be very effective in the 

unstructured home environment. 

 

2.4 Integrated Robotic Systems 

Research is being conducted on robotic assistive devices with increased autonomy 

and some artificial intelligence. This increased integration of robotic arms and other 
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sensors has led to some increasingly capable designs. Although still in development, 

these designs offer even greater potential as assistive devices for the future. 

The FRIEND14 robotic system is a Manus arm mounted onto a wheelchair and 

integrated with stereo vision, dedicated computer control, and specialized software. 

Besides programming with a keypad or joystick, the FRIEND system, shown in Figure 

2.8, is capable of being programmed via a haptic interface glove. The haptic glove allows 

the operator / programmer to feel what the robot feels through feedback to the user. A 

Haptic glove is put on and the action, such as pouring a glass, is completed and stored 

into the computer for future use. The action can then be replayed at a later time as a pre-

defined user function. The operator may also control the arm through verbal commands 

using an integrated voice recognition system. 

 

Figure 2.8 : FRIEND Robotic System 

 

Another design is the TAURO. The TAURO is an integrated robotic system using 

off-the-shelf components such as a power wheelchair, Manus manipulator, ultrasonic 

sensors, camera and computers. TAURO is a mobile service robot being developed for 

inspection, stocktaking and documentation tasks in indoor environments. The TAURO 

system integrates the movement of the wheelchair and the operation of the manipulator. 
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In this way if the goal is out of reach of the manipulator, the wheelchair will move on a 

path toward the goal until the manipulator can reach its goal. This coordinated control is a 

significant advance in the use of WMRAs. Although not specifically designed for 

rehabilitation robotics tasks, it would be readily adaptable to the task. The TAURO 

system can be seen in Figure 2.9.  

 

Figure 2.9 : TAURO Robotic System 

 

2.5 Research WMRAs 

Wheelchair mounted robotic arms (WMRAs) 

Combining the idea of a workstation and a mobile robot, a WMRA mounts a 

manipulator arm onto a power wheelchair. In the past, industrial manipulators have been 

too large and heavy to be mounted onto a power wheelchair. An industrial manipulator 

mounted onto the wheelchair would have excessively hindered the operator’s ability to 

maneuver the chair through doors and hallways. More recently, manipulator arms have 

been specifically designed to be used as WMRAs.  

Currently there are two production wheelchair mounted robotic arms (WMRAs) : 

the Manus, manufactured by Exact Dynamics, and the Raptor, manufactured by Applied 

Resources. Some WMRAs under development are the Helping Hand (USA), Weston 

Arm (UK), and the Asimov (Sweden). 
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Helping Hand system15 (Kinetic Rehabilitation Instruments, Hanover 

Massachusetts) is a 5DOF robotic arm being developed for commercial use. Its design is 

modular in nature and can be mounted to the side of a power wheelchair. The Helping 

Hand operates by joint control and is manipulated by using switches to control individual 

joints. 

The Weston robotic arm (Bath Institute of Medical Engineering) utilizes a vertical 

actuator mounted to a wheelchair with the main rotary joints (shoulder, elbow, and wrist) 

constrained to move in the horizontal plane. This is the continuation of the trolley 

mounted Wessex robot arm research.  

The Weston robotic system shown in Figure 2.10 is still under development. The 

Wessex arm is larger than both the Manus and the Raptor designs due to the use of a 

prismatic first joint. A prismatic joint moves in a linear sliding motion along a track. The 

other joints of the arm utilize a modified SCARA design as described in the Wessex 

manipulator. 

 

 

Figure 2.10 : Weston Arm 
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Another arm currently under development is the Asimov16 . The Asimov is a 

modular manipulator design with the motors and controls distributed throughout the arm. 

A computer rendering of the Asimov is shown in Figure 2.11. The modularity of the 

design allows for multiple mounting locations on a wheelchair or stationary application 

with various workspace geometries.  

The concept of a modular manipulator has several benefits. This provides the 

opportunity for one manipulator that can be used in either a mobile or workstation 

environment. Different link geometries can be explored to create the optimum design for 

any given application. Asimov models have been shown with all three possible mounting 

positions: front, side and rear. Without physical models to test the efficacy of the design, 

it is unknown how well the design would integrate into real-world applications.  

 

Figure 2.11 : Asimov Arm 

 

2.5.1 Rear Mount  

Several design considerations must be met before deciding on where, on a power 

wheelchair, to mount a robotic arm. The foremost design consideration is the safety of the 

operator17. The mount must be sturdy and rigid and not compromise the structural 

integrity or the functionality of the chair in any way.  Next the robotic arm must be 
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mounted in such a way that it has a minimum footprint outside the footprint of the chair 

itself. 

One of the potential benefits of a rear-mounted arm is that it will not increase the 

width of the wheelchair when not in use. Assuming that the arm is capable of being 

stowed behind the wheelchair, the arm would not create a distraction for individuals 

interacting with the person. Additionally, a rear-mounted arm would not be a physical 

obstruction during transfer into and out of the wheelchair. 

Rear-mounted robotic arms have drawbacks caused specifically by the mounting 

location. In order for a manipulator to reach to the front of the wheelchair the manipulator 

must have longer link lengths than a front- or side-mounted design. The longer link 

lengths required by the dorsal (rear) mount require greater torque from the motors and 

increased loads on the bearings. At this time there are no commercially available 

WMRAs that are mounted to the rear of the wheelchair. It should be noted that there is an 

optional rear mounting bracket available for the Raptor but this eliminates most of the 

ability of the arm to reach directly in front of the chair. 

 

2.6 Commercially Available WMRAs 

2.6.1 The Manus  

The Manus manipulator arm is a fully deterministic manipulator. A fully 

deterministic arm can be programmed in a manner comparable to industrial robotic 

manipulators. At any time the joint angles are known by the controller and the exact 

gripper position is known. The Manus has been under development since the mid 1980’s 

and entered into production in the early 1990’s. A picture of the Manus mounted onto a 

Permobil Max90 wheelchair is shown in Figure 2.12.  
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Figure 2.12 : Manus Arm 

 

2.6.1.1  Front Mount  

There are several possible mounting locations for a WMRA18. The mount may be 

in the front, side or rear of the wheelchair. The Manus utilizes a front mounting location 

to the left of the operator’s left knee. The first joint of the arm rotates about the z-axis 

(floor to ceiling) and is located approximately two inches above the level of the arm rest 

of the power wheelchair. This location allows for good manipulation of objects that are 

above the plane of the wheelchair seat, and most importantly the operator’s face and lap.   

The front mount offers greater access to the operator’s immediate working 

environment. The lap, tray top on armrests, and the mouth location can all be considered 

the immediate environment of the operator. Manipulation of objects in these areas is 

optimized with this mounting location. The high mounting position near the knee allows 

for good access to high objects such as items on shelves or operating doors on high 

cabinets. Objects in front of the chair are also readily manipulated.  

Additionally, the front mounting of the robotic arm provides excellent accessibility to 

high shelves and allows the execution of various activities of daily living.  

 The front mount for a WMRA has limitations. Users have commented the front 

mounting makes the manipulator arm obtrusive and can create uncomfortable social 
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tensions with people unfamiliar with robotic technology. This was noted as a hindrance in 

long-term Manus trials19. The mounting location also limited the ability of the operator to 

put their legs under desks, tables, and sinks in clinical evaluations. 19 

 

2.6.1.2  Closed Loop Control 

The Manus manipulator is controlled by a joystick and a keypad. The joystick is 

used to manually operate the manipulator is shown in Figure 2.13. Manus can also 

perform coordinated control of multiple joints with preprogrammed gestures using the 

16- button keypad shown in Figure 2.14. Gestures can be taught to the Manus and stored 

for future use via the keypad. With the use of the two input devices, the operator can run 

pre-programmed routines or directly control the manipulator in real time. 

The controller converts the inputs from an input device into a signal which 

directly controls the robotic arm. There may be a direct or indirect link between the input 

device and the output signal. This control may be a simple proportional control or a more 

complex method where input position is converted into arm velocity output. 

 Closed loop systems are commonly used in industrial robotics. These systems 

permit accurate repeated motions of robotic manipulators to accomplish specific tasks 

within a manufacturing cell. A manufacturing cell is a highly structured environment 

which permits high productivity by eliminating positioning variances.  

Rehabilitation workstations are very similar to the workspace originally used by 

industrial robotic arms. A closed loop system is useful in rehabilitation robotics 

applications by allowing pre-programmed actions and maneuvers. Pre-programmed 

gestures can be as simple or as complicated as required to accomplish a specific task.  

Closed loop control also allows further integration of the arm into more complicated and 

intelligent systems which can assist the operator. The MANUS system is a version of a 

closed loop system. 

 The downside to closed loop systems is their higher initial cost. The drive motors 

for the links must have encoders or some other form of feedback to send to the controller. 

Often the increased productivity, programmability, and system interoperability of a 
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closed loop system can compensate for this increased initial cost by offering more “bang 

for the buck”. 

 

 

 

Figure 2.13 : Manus Joystick Controller 

 

 

Figure 2.14 : Manus Keyboard Controller 

 

 

2.6.2 The Raptor 

Another production WMRA is the Raptor [Applied Resources, Inc.], which 

mounts the robotic arm to the right side of the wheelchair. This manipulator has four 

degrees of freedom plus a planar gripper and can be seen mounted to a power wheelchair 

in Figure 2.15. The arm is directly controlled by the user by either a joystick or 10-button 

controller. Because the Raptor does not have encoders to provide feedback to the 

controller, the manipulator cannot be pre-programmed in the fashion of industrial robots. 

This compromise was done to minimize overall system cost and make the product more 

readily available to the public. The simplicity of the Raptor arm and its controller allows 

it to be one-half the cost of the Manus arm. 
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Figure 2.15 : Raptor Arm 

 

2.6.2.1  Side Mount 

The Raptor is a side-mounted arm. The primary joint motor of the Raptor is an 

exposed gear motor which must be mounted onto the frame under the seat of the 

wheelchair. In the specific application that was used, the motor is positioned slightly in 

front of the operator’s waist. The Raptor side-mount is partially hidden underneath the 

chair. When the arm is not in use, the Raptor arm can be stowed relatively 

inconspicuously.  

Similar in design to front-mounted manipulators, the side-mounted manipulators 

also have drawbacks. One significant problem with a side-mount robotic arm is that it 

increases the width of the power wheelchair. With the side-mount located lower than the 

armrest (under the wheelchair), the arm will always add at least the width of the first link 

to the width of the wheelchair. This makes it even more difficult to for the operator to 

maneuver through doorways and tight hallways9. This exacerbates mobility problems 

already encountered with power wheelchairs.  

The side mount requires longer link lengths than a front mounted arm, to allow 

for manipulation of objects in front of the power wheelchair. These increased link lengths 

require larger and more powerful motors and gear-heads to move and stabilize the links’ 
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actuation. These factors often increase the weight and cost of designing arms for this 

application. The Raptor link geometry cannot be changed for specific applications. 

 

2.6.2.2  Open Loop Control 

An open loop controller places a human directly in the loop of controlling the 

arm. The operator continuously directs the arm into its final position. This type of system 

is inherently tolerant of positioning errors from a variety of causes. These errors may be 

specific to the robotic device such as play in the motors, gears, bearings or compliance 

within the links due to loading or environmental conditions such as thermal effects, wind, 

and movement of the base with respect to the reference frame. 

The open loop controller can correct for various types of positioning error because 

the operator continuously updates its position or the arm during the manipulation. The 

operator indirectly considers the sum of all the errors and moves the arm according to the 

actual perceived position of the end-effector. 

Robotic arms with open loop control require higher levels of concentration and 

eye-hand coordination from the operator than closed loop systems. This may be more 

taxing for the operator and can limit the use of the assistive robotic device. Open loop 

systems are unable to make precisely reproducible motions.  

A robotic system using an open loop controller may be much simpler by not 

requiring encoders to determine position or complex controllers. This trade-off allows for 

a cost-effective design.  The Raptor exclusively employs an open loop control scheme. 

Typically these open loop controllers are driven one joint at a time in order to simplify 

the controller. 
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Chapter Three  Procedure for Kinematic Analysis 
 
Chapter Three  Procedure for Kinematic Analysis 

 

3.1 Determination of Workspace 

 A workspace has been chosen which reflects specific requirements of individuals 

with disabilities20 21 22.  

Horizontal planes (x-y) were chosen with respect to the floor as the vertical axis z = 

0.  The origin of the user-coordinate system is 31.8” above the floor and all values given 

are referenced above the floor. A value of 2” above a given plane was required in order to 

give room for the manipulator to reach an object. The value in parenthesis is the z-axis 

height with respect to the user coordinate system (farthest forward-most point between 

the armrests) can be seen in Figure 3.1. 

1. Small objects on the floor: 2” (-29.8”) 

2. Larger light objects on the floor: 9” (-22.8”) 

3. Height of electric socket: 18” (-13.8”) 

4. Low coffee table: 26” (-5.82”) 

5. Height of standard table and door knob: 31” (-0.8”) 

6. Kitchen counter top: 38” (6.18”) 

7. Wall-mounted light switch: 50” (18.2”) 

8. Low shelf  above kitchen counter top 56” (24.18”) 
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-29.8”

-22.8”

-13.8”

-5.82”

-0.8”

6.18”

18.2”

24.18”

 

Figure 3.1 : Workspace Horizontal Planes 

 

There are three horizontal lines that are also used in determining the manipulability 

measure. These are slightly above the lap of the operator and move from the upper tip of 

the wheelchairs armrests. These would be (0, y, 0)  

 

Intersecting each of these horizontal (x-y) planes are vertical planes (y-z) which 

reflect objects directly on axis with the wheelchair (as if the operator was driving straight 

forward). These are distances in front of the operator based on the frame reference that 

the top-most intersection of the tip of the arm rest is the origin. The distances are in the x 

axis of the user coordinate system (farthest forward-most point between the armrests) can 

be seen in Figure 3.2. 

 Starting from the farthest point and working toward the operator is described as 

follows.  



www.manaraa.com

 
 23

1. 2” in front of the footrest of the power wheelchair 27.54”. This is the primary 

reference x-z plane. 

2. 14.04” in front of the operator. This is 13.5” behind the first x-z plane. 

3. 6.75” in front of the operator. This is half the distance of the 13.5” grid. 

4. 0.54” is front of the operator. This is 13.5” behind the second x-z plane. 

5. The x-z plane at the origin of the user reference plane. 

6. The x-z plane that reflects the mouth of the operator. 4” behind the origin. 

6.75”

14.04”

27.54”

-4”
0”

0.54”

 

Figure 3.2 : Workspace Vertical Planes 

   

Finally to create the individual points a third plane (x-z) is defined. The plane located at 

the origin separates the chair into two lateral halves and is shown in Figure 3.3. The 

wheelchair used for the analysis is 27” wide including the width of the drive wheels. The 

y axis in the user frame of reference is positive moving from the body to the right hand 

extended out along the arm. 

1. The plane intersecting the origin.  

2. 13.5” from the origin toward the mounted arm. 
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3. 23.5” from the origin toward the mounted arm. This represents the 10” from 

the outermost edge of the wheels. 

23.5” 0”13.5”

 

Figure 3.3 : Workspace Vertical Planes 

3.2 Denavit - Hartenberg Parameters  

The Denavit - Hartenberg parameters23 are a method of analyzing robotic 

manipulators that was first introduced in 1955. This technique allows robotics researchers 

an approach to standardize robotics nomenclature and to create an easy method to 

consider link arrangements in robotic manipulators. Each joint angle is analyzed 

separately with links separating each joint. A link is defined only as a rigid body that 

maintains a relationship between two adjacent joint axes within a manipulator. Joints in 

robotic mechanisms may be single dimensional such as rotational (revolute) or prismatic 

(linear extension). Of the two previous joint types the revolute joint is by far the most 

common. 

Multidimensional (two and three dimension) joints could be cylindrical, screw, 

planar, or spherical. Due to the increased complexity of these types of joints they are not 

used as often as revolute or prismatic joints. When analyzing a joint of n dimensions with 
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the Denavit-Hartenberg (D-H) parameter method the joint is broken into n joints with one 

degree of freedom connected to n-1 links of zero links.  

The Denavit-Hartenberg rules provide a guide for locating coordinate systems on 

each link of a multi-link kinematic chain. By following the D-H rules, the homogeneous 

transformations between adjacent links are defined. In order to use the D-H parameter 

method the parameters must be properly used. There are four parameters used in 

manipulator analysis. Three are fixed and are purely geometric these are the link twist, 

the link length, and the last is the link offset. The final parameter is variable and it is the 

joint angle. Within the nomenclature variable i refer to the link number. 

The link length (a i-1) is the length of a line that is mutually orthogonal to the 

previous joint axis (i-1) and the next joint axis (i). The link twist (α ι−1) defines the 

relative location of the two joint axis. The link twist is determined by creating a plane 

which is normal to the previously mentioned mutually perpendicular line and projection 

of both axes onto this plane. The angle measured from link i-1 and link i (using a right 

hand rule for angle determination) is the link twist. The third parameter is link offset (di) 

which is the distance along the common axis from one link to the following link. The 

final parameter is the joint angle (θ ι).  

The Figure 3.4 shows the relationships between link number (i), link length (a i-1), 

link twist (α ι−1), link offset (di), and joint angle (θ ι).  
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Figure 3.4 : D-H Parameter Link Parameters 

 

 The Link Transformation equation relates all of the D-H parameters together. It 

can be seen that each parameter is used once and in a specific order within the link 

transformation equation. This equation shown below and contain two rotations and two 

translations in a specific order. The first rotation is done about the x axis by the amount 

of the link twist (α ι−1 ), next there is a translation about the x axis by an amount of the 

link length (a i-1) 

 
Equation 3.1 

 

Equation 3.1 relates the order with which the rotation and translations must be 

accomplished in order to use the D-H parameter table is shown in.  

 

Equation 3.2 
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The individual link transformations can be determined by using D-H parameters 

and Equation 3.2.  

 

3.3 Jacobian Matrix 

The Jacobian is a multidimensional form of the derivative. Because we are 

working with a three degree of freedom manipulator there are three separate equations 

that define the positional matrix (forward kinematics).  

Let us consider that we have three functions, each comprised of three independent 

variables. This is equivalent to the three position vectors that are all functions of the three 

joint angles. In our case the y variables represent position and the x variables represent 

the joint angles. The functions fn are shown in Equation 3.3 represent the position vector 

from within the final transformation matrix of the manipulator. 

 

y = f (x , x , x )3 3 1 2 3

y = f (x , x , x )1 1 1 2 3

y = f (x , x , x )2 2 1 2 3

 

Equation 3.3 

 

These functions can also be expressed in vector notation by Equation 3.4. 

 

Y = F(X) 
Equation 3.4 

 

Using the chain rule and differentiating we can determine the differentials of yi as a 

function of xj the previous function is shown in Equation 3.5. 
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δy = 1 ∂x3

∂f1 δx3+∂x1

∂f1 δx1
∂x2

∂f1 δx2+

δy = 3 ∂x3

∂f3 δx3+∂x1

∂f3 δx1
∂x2

∂f3 δx2+

δy = 2 ∂x3

∂f2 δx3+∂x1

∂f2 δx1
∂x2

∂f2 δx2+

 

Equation 3.5 

 

 

To simply the previous equation we can again place it into vector notation in Equation 

3.6. 

δY = ∂X
∂F δX

 

Equation 3.6 

 

 

This equation is a 3 x 3 matrix and is referred to as the Jacobian. It should be noted that if 

the functions f1(X) through f3(X) are nonlinear then their partial derivatives are a function 

of xi. This equation can then be shown in Equation 3.7 

 

δY = J(X)δX  Equation 3.7 

 

Finally by dividing by the differential time element the Jacobian becomes a method of 

mapping velocities in X to velocities in Y.  

 

δY = J(X)δX  
Equation 3.8 

 

J(X) is a linear transformation that changes with time. Hence the Jacobian shown in 

Equation 3.8 is a time-varying linear transformation.  

The use of the Jacobian in Robotics relates joint velocities to Cartesian velocity at 

the tip of the gripper. In a Jacobian matrix the number of rows indicate the number of 
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degrees of freedom in the Cartesian space being considered and the number of columns 

equals the number of joints in the manipulator arm. It should be noted that there is an 

instantaneous linear relationship between joint angle rates and manipulator tip velocities. 

This relationship is used in the determination of joint angles from positional input is 

applied in the inverse kinematic program used to determine joint angles from positional 

input arguments. 

The relationship between joint velocity and Cartesian manipulator tip velocities in 

Equation 3.9 relies on the requirement that the Jacobian velocity be invertible. A matrix 

that is singular is not invertible.  In order for the Jacobian to be used in this application it 

must be non-singular and thus invertible. 

 

Θ = J   (Θ)  ν-1
 Equation 3.9 

 

Most manipulators have values for their joint angles where the Jacobian becomes 

singular. These points are referred to as singularities of the mechanism or often shorted to 

singularities. All robotic manipulators have singularities at the limit of their workspace. 

Additionally there are singularities within the workspace of manipulators as well. These 

are referred to as internal singularities. From this we can see that there exist two types of 

singularities: 

Workspace boundary singularities occur when the manipulator is fully extended 

or folded upon itself so that the end effector is sufficiently near the boundary of the 

workspace. The other type of singularity is a Workspace interior singularity. These are 

usually away from the workspace boundary but generally occur where two or more joint 

axes line up. At a singularity the manipulator looses one or more degrees of freedom in 

Cartesian space making the movement of the end effector impossible.  

 

3.4 Manipulability Ellipsoid 

A concept known as the manipulability ellipsoid will be introduced as well as the 

volume of the ellipsoid the manipulability measure.  In the end a total evaluation of any 
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manipulator system would require the analysis of many factors such as the volume of the 

workspace, ease of use, speed, precision and accuracy etc. The manipulability measure is 

the absolute value of the determinate of the Jacobian matrix of the positional sub-matrix 

of the final transformation matrix of the manipulators arm reference frame. 

We will consider a manipulator with three degrees of freedom. This is the case 

with both manipulators being studied. The three joint variables will be denoted as a 3x1 

vector and describe the position of the end effector. The kinematic relation between q and 

r is shown in Equation 3.10.  

 

r = f  (q)r  
Equation 3.10 

 

 

The relation between the velocity vector v corresponding to r and the joint velocity is 

shown in Equation 3.11. 

 

v = J (q) q 
Equation 3.11 

 

 

where J(q) is the Jacobian matrix in Equation 3.11 

 

If we consider the set of all possible joint velocities and the resultant end effector 

velocities  

 

q (q  + q  + q )1 2 3
2 2 2=  

Equation 3.12 

 

 

In the Equation 3.12, the value to the left of the equation, must be less than or equal to 

unity.  This is the manipulability ellipsoid with the major axis of the ellipsoid being the 
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vector which will allow for the greatest end effector velocity and the minor axis of the 

ellipsoid will be vector which gives the lowest possible end effector velocity. In the case 

being analyzed the manipulability ellipsoid will have three axes. In manipulators with m 

links the manipulability ellipsoid will have m axes.  

 

 

Figure 3.5 : Manipulability Ellipsoid 

 

In the special case where all the ellipsoid axes are equal the ellipsoid will actually 

be spherical. At the special case where the manipulability ellipsoid is spherical the end 

effector can move in any direction with the same maximum velocity. The larger the size 

of the ellipsoid the faster the end effector can move. 

One possible method of analysis is to determine the volume of the ellipsoid. This 

is computationally straight forward and is defined in Equation 3.13 by cmw where: 

 

w = σ1σ σ2 3

2π m / 2 /[2  4  6      (m-2) m]           if m is odd
c  =m

2(2π)(m-1)/2 /[1  3  5      (m-2) m]    if m is even{
 

Equation 3.13 

 

 

The value of cm is constant when m is fixed. This is the case, m = 3, with the 

manipulators being studied. Because the value of cm is constant we can see that the 



www.manaraa.com

 
 32

volume of the ellipsoid is proportional to the value of w. We refer to w as the 

manipulability measure. The manipulability measure has specific properties that allow us 

to define it readily from the Jacobian and known joint angles. First in the broadest sense 

the manipulability measure shown is shown in Equation 3.14: 

 

w = det J(q) J (q)T  
Equation 3.14 

 

 

And more specifically to our application where the manipulator is non-redundant the 

previous equation reduces to Equation 3.15. 

 

w = det J(q) 
Equation 3.15 

 

 

This shows that at a singular configuration the value of w approaches or equals zero. 

Hence the value of the manipulability measure, which is the volume of the manipulability 

ellipsoid, will be equal to the determinate of the Jacobian.  

 

3.5 Inverse Kinematic Program 

A method for determining the joint angles of each robot arm was required in order 

to determine the manipulability measure and to verify it within the solid model in Solid 

WORKS. An overview of the program and the methods required to operate its 

subroutines is as follows.  

In essence, the manipulability measure is the absolute value of the determinate of 

the Jacobian matrix of the positional sub-matrix of the final transformation matrix of the 

manipulators arm reference frames. It is this value that is used as the main 
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The Jacobian matrix is derived from the 1x3 positional matrix within the final 

transformation matrix of the arm. The transformation matrix is created through the 

judicious application of the DH-parameters using the appropriate formulae. 

One challenge is to determine the joint angles of the robotic arm for a given point 

in 3-D space. This requires the use of a method of reverse kinematics. The reverse 

kinematics of the robotic arms was determined with a program in MatLAB.  

The program shown in Figure 3.6 uses the Jacobian matrix in a numerical 

methods approach subdividing the positional difference from the start position of the 

gripper and the desired goal position into several discrete goals. These discrete goal 

positions were entered sequentially entered into the Jacobian.  

The output of the Jacobian is a matrix containing the incremental change of joint 

angles required to obtain the new position. The joint angle change is added to the 

previous joint angle and this new value is input into the forward kinematics of the 

transformation matrix. The actual position is compared to the desired discrete position 

and if it is below an error value than the next position is computed. If the error is too 

great the final error position is subtracted from the desired position and recomputed into 

the Jacobian and the process repeats the loop. 

In the inverse kinematic solution there are four subroutines along with the main 

program. The subroutines are called by the main program to execute additional steps. 
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Figure 3.6 : Program Flowchart 

 

Read Initials (thetas (1,2,3)) 
Define number of steps 

Set tolerance (z,y,z) 
Set manipulability threshold 

Get final position [x;y;z;] 

Calculate Initial Position [x;y;z]
From given Thetas (1,2,3) 

Initialize 
Current State 

Initial Position [x;y;z;] 
Initial Thetas (1,2,3)

Calculate waypoints on 
straight line path = the plan 

Set the waypoint position goal 

Attempt an arm move 
Move arm toward goal attempt

Is position 
approaching a 

singularity?

Is new position - 
goal within 
tolerance?

Is this the last 
point in the 

plan?

Display results 
Show points 
Show angles 

Finish 

START 
robot.m 

no

no

yes

no 
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The main program is called robot.m and is a MatLAB file which has been 

extensively commented for ease in comprehension. The code for robot.m and the five 

subroutines that it calls upon can be found in the Appendix B. The subroutines are listed 

in the order that they are called upon. 

 

3.6 Procedure for Analysis 

The evaluation of WMRAs will encompass three steps. First is the creation of a 

procedure for the kinematic analysis of any robotic arm. Second is the evaluation of two 

commercially available manipulators (Manus and Raptor). And third are the design 

recommendations or insights gained from the second step.  

In order to create a procedure for the kinematic analysis of WMRAs it is necessary to 

separate the process into a series of steps. More specifically the procedure followed these 

steps: 

1. Create a Denavit - Hartenberg parameter table and transformation matrices for the 

manipulator to be measured. 

2. Create link transformations for the manipulator. 

3. Determine the Jacobian Matrix for the manipulator. 

4. Model the manipulator and a generic power wheelchair in Solid WORKS  so 

that angle and joint relationships can be shown graphically. 

5. Pick a series of points (grid) surrounding the wheelchair / arm assembly. These 

points have specific applications in rehabilitation engineering.  

6. Create a computer program using a numerical methods approach to determine the 

joint angles of the arm for a given point in the workspace. The joint angles are 

then used to determine the manipulability of the arm for the given point.  

7. Plot and compare the normalized manipulability measures for each arm. Verify 

that the joint angle provided by the inverse kinematics program correspond to 

positions in the model space.  
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Chapter Four      Analysis Results 
 
 
Chapter Four   Analysis Results 
 
4.1 Evaluation of the Manus: 

 This is the analysis of the Manus system. An operating unit was not 

available to test directly. Therefore, specifications from the manufacturer, technical 

illustrations and photographs of the system were used to create the solid model. It was 

reproduced as faithfully as possible with the provided information.  

The figure below shows the frames of reference for the power wheelchair and the 

Manus. The Manus in Figure 4.1 is shown in its fully lowered position. This position was 

chosen because it allows the manipulator access to the floor. It is possible that the 

manipulability measures would be higher when reaching into cabinets if the Z-lift 

mechanism were used. The reference frames are important in understanding the 

relationships shown in the D-H Parameter tables.  
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Zu
Z3

ZG

Z0,1

Xu

X3

XG

X0,1
Y2

X2

 

Figure 4.1 : Manus Reference Frames 

 

 

The transformations for each joint with respect to the previous joint are shown 

below. The nomenclature for each matrix is as follows.  

T Transformation Matrix 

wrt With Respect To 

Number (pre & post) Corresponds to the frame of reference 
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The D-H Parameters for the Manus with 3 DOF are outlined in Table 4.1. The table 

shows the relationships between link number (i), link twist (α ι−1), link length (a i-1), link 

offset (di), and joint angle (θ ι).  

Table 4.1 : D-H Parameters for Manus 

i αι−1 ai-1 di θι  
1 0° 0 0 θ1 

2 -90° 0 0 (θ2−90°) 

3 0° 15.75 9.20 θ3 

4 0° 18.77 -3.94 0 
 

Figure 4.1 is used to create the D-H Parameters shown in Table 4.1. These 

parameters are entered into Equation 3.2 to achieve each respective frame transformation. 

The transformation matrix which relates frame 1 with respect to frame 0 is shown in 

Equation 4.1 

T1wrt0

cos θ1( )
sin θ1( )

0

0

sin θ1( )−

cos θ1( )
0

0

0

0

1

0

0

0

0

1














:=

 

Equation 4.1 

 

The transformation matrix which relates frame 2 with respect to frame 1 is shown in the 

Equation 4.2. 

T2wrt1

sin θ2( )
0

cos θ2( )
0

cos θ2( )
0

sin θ2( )−

0

0

1

0

0

0

0

0

1














:=

 

Equation 4.2 

 

 

 

The transformation matrix which relates frame 3 with respect to frame 2 is shown in the 

Equation 4.3. 



www.manaraa.com

 
 39

cos θ3( )
sin θ3( )

0

0

sin θ3( )−

cos θ3( )
0

0

0

0

1

0

15.75

0

9.20

1














=

θ3

 

Equation 4.3 

 

The transformation matrix which relates frame G, or the frame of the gripper, with 

respect to frame 3 is shown in Equation 4.4. 

TGwrt3

1

0

0

0

0

1

0

0

0

0

1

0

18.77

0

3.94−

1












:=

 

Equation 4.4 

 

A user frame {U} is created to reflect a frame with correlation to the user. 

Equation 4.5 below shows the transformation matrix which defines the translational 

relationship between frame 0 {0} with respect to the user frame {U}. 

T0wrtU

1

0

0

0

0

1

0

0

0

0

1

0

15.04

9.97

1.74

1












:=

 

Equation 4.5 

 

The transformation matrices are multiplied together (Equation 4.6) to give the transform 

relating the end gripper position with respect to the user frame. 

T0wrtU*T1wrt0*T2wrt1*T3wrt2*TGwrt3 = TGwrtU Equation 4.6 

 

The final transformational matrix is shown in Equation 4.7. Due to the size of the 

transformation matrix and the constraints of page formatting, the matrix has been 

separated into columns one and two: 
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cos θ1( ) sin θ2( )• cos θ3( )• cos θ1( ) cos θ2( )• sin θ3( )•+

sin θ1( ) sin θ2( )• cos θ3( )• sin θ1( ) cos θ2( )• sin θ3( )•+

cos θ2( ) cos θ3( )• sin θ2( ) sin θ3( )•−

0

cos θ1( )− sin θ2( )• sin θ3( )• cos θ1( ) cos θ2( )• cos θ3( )•+

sin θ1( )− sin θ2( )• sin θ3( )• sin θ1( ) cos θ2( )• cos θ3( )•+

cos θ2( )− sin θ3( )• sin θ2( ) cos θ3( )•−

0












  

Equation 4.7 

 

and then columns three and four: 
sin θ1( )−

cos θ1( )
0

0

18.77 cos θ1( )• sin θ2( )• cos θ3( )• 18.77 cos θ1( )• cos θ2( )• sin θ3( )•+ 15.04+ 5.26 sin θ1( )•− 15.75 cos θ1( )• sin θ2( )•+

18.77 sin θ1( )• sin θ2( )• cos θ3( )• 18.77 sin θ1( )• cos θ2( )• sin θ3( )•+ 9.97+ 5.26 cos θ1( )•+ 15.75 sin θ1( )• sin θ2( )•+

18.77 cos θ2( )• cos θ3( )• 18.77 sin θ2( )• sin θ3( )•− 1.74+ 15.75 cos θ2( )•+

1












  
 

The position vector, a 3x1 matrix, is the first three rows of the final column of the 

final transformational matrix and is shown in Equation 4.8. This matrix is also the 

forward kinematic matrix. When the three joint angles are computed, the result is the 

position of the gripper in space with respect to the user frame {U}. From the forward 

kinematic matrix we can compute the Jacobian Matrix -  the partial derivative of the 

positional matrix. 

 
18.77 cos θ1( )• sin θ2( )• cos θ3( )• 18.77 cos θ1( )• cos θ2( )• sin θ3( )•+ 15.04+ 5.26 sin θ1( )•− 15.75 cos θ1( )• sin θ2( )•+

18.77 sin θ1( )• sin θ2( )• cos θ3( )• 18.77 sin θ1( )• cos θ2( )• sin θ3( )•+ 9.97+ 5.26 cos θ1( )•+ 15.75 sin θ1( )• sin θ2( )•+

18.77 cos θ2( )• cos θ3( )• 18.77 sin θ2( )• sin θ3( )•− 1.74+ 15.75 cos θ2( )•+








  

Equation 4.8 

 

 
Equation 4.9 below is the Jacobian of the Manus. The matrix has been separated into 

three columns and is shown sequentially for ease of viewing.  

Column 1: 
-18.77*sin(t1)*sin(t2)*cos(t3)-18.77*sin(t1)*cos(t2)*sin(t3)-5.26*cos(t1)-15.75*sin(t1)*sin(t2) 

18.77*cos(t1)*sin(t2)*cos(t3)+18.77*cos(t1)*cos(t2)*sin(t3)-5.26*sin(t1)+15.75*cos(t1)*sin(t2) 
0 

 

Equation 4.9 
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Column 2: 
18.77*cos(t1)*cos(t2)*cos(t3)-18.77*cos(t1)*sin(t2)*sin(t3)+15.75*cos(t1)*cos(t2) 
18.77*sin(t1)*cos(t2)*cos(t3)-18.77*sin(t1)*sin(t2)*sin(t3)+15.75*sin(t1)*cos(t2) 

-18.77*sin(t2)*cos(t3)-18.77*cos(t2)*sin(t3)-15.75*sin(t2) 
 

Column 3: 
-18.77*cos(t1)*sin(t2)*sin(t3)+18.77*cos(t1)*cos(t2)*cos(t3) 
-18.77*sin(t1)*sin(t2)*sin(t3)+18.77*sin(t1)*cos(t2)*cos(t3) 

-18.77*cos(t2)*sin(t3)-18.77*sin(t2)*cos(t3) 
 

Values for the manipulability measure are plotted in both horizontal and vertical 

planes. The grid density in the analyzed workspace is greater in the z axis, which gives a 

greater number of points with which to observe trends and changes of the manipulability 

measure. There are four vertical axes and eight horizontal axes.  



www.manaraa.com

 
 42

4.1.1 Vertical Planes 

In robotics, the term approach is used to describe reaching a point in space 

without regard for gripper orientation. In this thesis, the term approach and also access 

will be used in a similar fashion, indicating that the arm is capable of reaching that 

specific point, or in broader terms, the area specified. In order for a point to be defined as 

having access, it must have a manipulability measure of at least 100. The maximum value 

of the manipulability measure in the data set was 7084.4 at point [-4, -6.75, 13.5]. 

Because of the 3-dimensional nature of the data to be diagrammed, a method for 

representing the relative value of the manipulability measure and a qualitative 

determination are shown in Figure 4.2. The size and color of the spheres are used to 

represent the manipulability measure as a percentage of the maximum manipulability 

measure computed. 

81 - 100%      Excellent

61 -   80%      Very Good

41 -   60%      Good

21 -   40%      Limited

01 -   20%      Very Limited

     >   1%       Undetermined

Manipulability 
Measure

 

Figure 4.2 : Representation of the Manipulability Measure 

 

Figure 4.3 through Figure 4.6 show the manipulability measures of the Manus for 

vertical planes within the defined workspace.   

The Manus arm offered very good access to low cabinets and shelves in front of 

and to the far left corner of the workspace that has been defined. In Figure 4.3 the 

manipulability measure remained very good throughout the z-axis in this far left corner of 

the operator’s workspace. A significant limitation was the very limited ability to grab 
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objects from the floor directly in front of the operator’s feet. The area of highest agility 

would be at least partially obscured by the robot base.  

 

 

Figure 4.3 : Manus y-z Plane @ x = 27.54" 

Table 4.2 : Data for x = 27.54” 

x y z n 
27.54 0 24.18 0.64 
27.54 13.5 24.18 0.52 
27.54 23.5 24.18 0.72 
27.54 0 18.2 0.65 
27.54 13.5 18.2 0.49 
27.54 23.5 18.2 0.77 
27.54 0 6.18 0.53 
27.54 13.5 6.18 0.35 
27.54 23.5 6.18 0.69 
27.54 0 -0.8 0.52 
27.54 13.5 -0.8 0.33 
27.54 23.5 -0.8 0.68 
27.54 0 -5.82 0.56 
27.54 13.5 -5.82 0.38 
27.54 23.5 -5.82 0.71 
27.54 0 -13.8 0.64 
27.54 13.5 -13.8 0.48 
27.54 23.5 -13.8 0.77 
27.54 0 -22.8 0.61 
27.54 13.5 -22.8 0.50 
27.54 23.5 -22.8 0.66 
27.54 0 -29.8 0.00 
27.54 13.5 -29.8 0.22 
27.54 23.5 -29.8 0.00 

 
 

 

As the yz - plane approaches the manipulator base, a singularity creates a 

limitation of movement near the first rotational axis as shown in Figure 4.4. At the line of 

data points shown in Figure 4.4 that satisfy y = 13.5” and y-z plane x = 14.04”, the 

manipulability measure becomes very low. With the threshold that was used for the 

program, these points were defined as unobtainable. 
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Figure 4.4 : Manus y-z Plane @ x = 14.04" 

Table 4.3 : Data for x = 14.04” 

x y z n 
14.04 0 24.18 0.37 
14.04 13.5 24.18 0.00 
14.04 23.5 24.18 0.54 
14.04 0 18.2 0.34 
14.04 13.5 18.2 0.00 
14.04 23.5 18.2 0.52 
14.04 0 6.18 0.19 
14.04 13.5 6.18 0.00 
14.04 23.5 6.18 0.38 
14.04 0 -0.8 0.18 
14.04 13.5 -0.8 0.00 
14.04 23.5 -0.8 0.37 
14.04 0 -5.82 0.23 
14.04 13.5 -5.82 0.00 
14.04 23.5 -5.82 0.41 
14.04 0 -13.8 0.33 
14.04 13.5 -13.8 0.00 
14.04 23.5 -13.8 0.51 
14.04 0 -22.8 0.37 
14.04 13.5 -22.8 0.00 
14.04 23.5 -22.8 0.53 
14.04 0 -29.8 0.23 
14.04 13.5 -29.8 0.00 
14.04 23.5 -29.8 0.20 

 
 

 

 

 

 The Manus arm as shown in Figure 4.5 has very good access to objects along the 

side of the chair at the vertical plane of x = 6.75”. The only limitation to this side reach is 

approaching low objects on the floor. It should also be noted that the effect of the 

singularity shown in Figure 4.4 has not been completely eliminated. At the vertical line 

on the yz - plane at y = 13.5, the manipulability measure is very low from coffee table (z 

= -5.82”) to kitchen countertop (z = 6.18”).  
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Figure 4.5 : Manus y-z Plane @ x = 6.75" 

Table 4.4 : Data for x = 6.75” 

x y z n 
6.75 0 6.18 0.35 
6.75 13.5 6.18 0.14 
6.75 23.5 6.18 0.51 
6.75 0 24.18 0.52 
6.75 13.5 24.18 0.32 
6.75 23.5 24.18 0.64 
6.75 0 18.2 0.49 
6.75 13.5 18.2 0.28 
6.75 23.5 18.2 0.64 
6.75 0 -0.8 0.33 
6.75 13.5 -0.8 0.13 
6.75 23.5 -0.8 0.51 
6.75 0 -5.82 0.37 
6.75 13.5 -5.82 0.18 
6.75 23.5 -5.82 0.55 
6.75 0 -13.8 0.47 
6.75 13.5 -13.8 0.27 
6.75 23.5 -13.8 0.64 
6.75 0 -22.8 0.50 
6.75 13.5 -22.8 0.32 
6.75 23.5 -22.8 0.61 
6.75 0 -29.8 0.25 
6.75 13.5 -29.8 0.21 
6.75 23.5 -29.8 0.00 

 
 

 

 Access to high shelves and counters increased as the operator approached them 

from the left side. Values of the manipulability measure in Figure 4.6 were near optimum 

for reaching objects when the operator aligned the goal parallel to the seat of the chair at 

the yz plane of x = 0.54”. It can also be seen in the following figures that the measure 

was near maximum between the values of x from 0” to -4”.  
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Figure 4.6 : Manus y-z Plane @ x = 0.54" 

Table 4.5 : Data for x = 0.54” 

x y z n 
0.54 0 24.18 0.70 
0.54 13.5 24.18 0.60 
0.54 23.5 24.18 0.75 
0.54 0 18.2 0.73 
0.54 13.5 18.2 0.59 
0.54 23.5 18.2 0.83 
0.54 0 6.18 0.63 
0.54 13.5 6.18 0.46 
0.54 23.5 6.18 0.78 
0.54 0 -0.8 0.62 
0.54 13.5 -0.8 0.45 
0.54 23.5 -0.8 0.77 
0.54 0 -5.82 0.66 
0.54 13.5 -5.82 0.49 
0.54 23.5 -5.82 0.79 
0.54 0 -13.8 0.72 
0.54 13.5 -13.8 0.58 
0.54 23.5 -13.8 0.83 
0.54 0 -22.8 0.65 
0.54 13.5 -22.8 0.57 
0.54 23.5 -22.8 0.66 
0.54 0 -29.8 0.00 
0.54 13.5 -29.8 0.12 
0.54 23.5 -29.8 0.00 

 
 

 

 Access to the mouth was at maximum values and actually increased as the arm 

moved past the mouth position [-4, 0, 13.5] in Figure 4.7 toward the opposite side of the 

chair. The arm has very good access to the area directly in front of the chest of the 

operator. It is interesting to note that the Manus arm is capable of reaching across the 

centerline of the wheelchair to manipulate objects. In fact, in regions directly around the 

operator, the manipulability measure actually rises to a maximum value 6.75” past the 

centerline of the wheelchair.  
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Figure 4.7 : Manus y-z Plane @ x = 0” 

Table 4.6 : Data for Manus x = 0” 

x y z n 
0 -6.75 16.5 0.94 
0 -4 16.5 0.87 
0 0 16.5 0.75 
0 4 16.5 0.65 
0 6.75 16.5 0.60 
0 13.5 16.5 0.61 
0 23.5 16.5 0.85 
0 -6.75 13.5 0.96 
0 -4 13.5 0.86 
0 0 13.5 0.73 
0 4 13.5 0.62 
0 6.75 13.5 0.57 
0 13.5 13.5 0.58 
0 23.5 13.5 0.85 
0 -6.75 0 0.94 
0 -4 0 0.82 
0 0 0 0.65 
0 4 0 0.53 
0 6.75 0 0.48 
0 13.5 0 0.48 
0 23.5 0 0.80 

 
 

 

 

The maximum manipulability measure for the Manus manipulator was found at [-

4, -6.75, 13.5] in Figure 4.8. These values were determined through discrete analysis and 

are not necessarily a global maximum. The measure is increasing, moving from x = 0 

through x = -4 to x = -6.75, where the last data point was on the z = 13.5” height.  

The Manus has excellent manipulability measures at the vertical plane (x = -4”) at 

or near the height of the mouth (z = 13.5” to 16.5”) of the operator. The Manus provides 

excellent manipulator use when feeding and completing tasks that are at or about the 

mouth of the operator. 
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Figure 4.8 : Manus y-z Plane @ x = -4" 

Table 4.7 : Data for Manus at x = -4” 

x y z n 
-4 -6.75 13.5 1.00 
-4 -4 13.5 0.95 
-4 0 13.5 0.87 
-4 4 13.5 0.80 
-4 6.75 13.5 0.76 
-4 13.5 13.5 0.76 
-4 23.5 13.5 0.95 
-4 -6.75 16.5 0.95 
-4 -4 16.5 0.93 
-4 0 16.5 0.86 
-4 4 16.5 0.80 
-4 6.75 16.5 0.77 
-4 13.5 16.5 0.77 
-4 23.5 16.5 0.92 

 
 

 

 

 

 

 

 



www.manaraa.com

 
 49

4.1.2 Horizontal Planes 

Approaching the analysis from horizontal slices better fit the requirements for 

designing a manipulator as an assistive device. Most objects rest on horizontal surfaces 

that have standard heights above ground level. An example is the standard desk height or 

the height of a light switch or a door handle.  

These horizontal slices through the workspace also help to reflect the importance 

of wheelchair orientation for reaching a goal with a WMRA. A manipulator with very 

little access in one orientation but excellent access in another may require that the 

operator approach the goal with a different bearing to achieve the goal. 

Starting at the top or highest defined plane, Figure 4.9 shows that for access to 

low kitchen cabinet shelves, the Manus has very good manipulability measures directly to 

the front and to the side of the chair.  

The overall average of normalized manipulability is good at 0.53. The closer the 

goal is to the first rotational axis, the lower the manipulability measure will be. This 

remains constant throughout all of the horizontal planes.  

 

 

Figure 4.9 : Manus x-y Plane @ z = 24.18” 

Table 4.8 : Data for Manus at z = 24.18” 

x y z n 
27.54 0 24.18 0.64 
27.54 13.5 24.18 0.52 
27.54 23.5 24.18 0.72 
14.04 0 24.18 0.37 
14.04 13.5 24.18 0.00 
14.04 23.5 24.18 0.54 
6.75 0 24.18 0.52 
6.75 13.5 24.18 0.32 
6.75 23.5 24.18 0.64 
0.54 0 24.18 0.70 
0.54 13.5 24.18 0.60 
0.54 23.5 24.18 0.75 

 
 

 

In Figure 4.10 the horizontal plane of a light switch (z=18.2”) can be seen. 
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When attempting to operate a light switch, the optimum approach is from the side 

because the n value directly to the side of the operator is excellent (0.83). The 

manipulability measure is still very good in the far front of the operator and to the far left 

corner of the workspace.  

The average n-value for this plane is good at 0.53. Access to the inside the 

perimeter of the workspace are limited.  

 

 
Figure 4.10 : Manus x-y Plane @ z = 18.2” 

Table 4.9 : Data for Manus at z = 18.2” 

x y z n 
27.54 0 18.2 0.65 
27.54 13.5 18.2 0.49 
27.54 23.5 18.2 0.77 
14.04 0 18.2 0.34 
14.04 13.5 18.2 0.00 
14.04 23.5 18.2 0.52 
6.75 0 18.2 0.49 
6.75 13.5 18.2 0.28 
6.75 23.5 18.2 0.64 
0.54 0 18.2 0.73 
0.54 13.5 18.2 0.59 
0.54 23.5 18.2 0.83 

 
 

 

At the kitchen countertop level, Figure 4.11, the manipulator’s effectiveness drops 

significantly. This is due in part to the plane being observed having very little vertical 

separation from the plane that the first link rotates along. This would make the 

manipulability measure reach low values in the horizontal plane of z = 1.74”. Because the 

planes of the countertop (z = 6.16” Figure 4.11) and desktop / door handle (z = - 0.8” 

Figure 4.12) are close to this plane, they have very similar values for the manipulability 

measure.  

The average n-value for the plane is good at 0.42. The highest n-value on this 

plane is to the left of the operator. Accessibility of objects within the workspace are best 

when attempted close to the operator, such as at x = 0.54 compared to any other yz-plane.  
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Figure 4.11 : Manus x-y Plane @ z = 6.18” 

Table 4.10 : Data for Manus at z = 6.18” 

x y z n 
27.54 0 6.18 0.53 
27.54 13.5 6.18 0.35 
27.54 23.5 6.18 0.69 
14.04 0 6.18 0.19 
14.04 13.5 6.18 0.00 
14.04 23.5 6.18 0.38 
6.75 0 6.18 0.35 
6.75 13.5 6.18 0.14 
6.75 23.5 6.18 0.51 
0.54 0 6.18 0.63 
0.54 13.5 6.18 0.46 
0.54 23.5 6.18 0.78 

 
 

 

The Manus arm manipulability at the height of a table or door knob is shown in 

Figure 4.12. At this plane the interior regions of the plane have very limited accessibility. 

At the outer corners of the workspace the arm has good or better access to objects with 

the maximum manipulability, for this plane, to the left of the operator. 

The average n-value for the plane is 0.41 and is the poorest average plane value 

with the exception of lowest plane. This plane is marginally good on the qualitative scale.  
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Figure 4.12 : Manus x-y Plane @ z = -0.8” 

Table 4.11 : Data for Manus at z=-0.8” 

x y z n 
27.54 0 -0.8 0.52 
27.54 13.5 -0.8 0.33 
27.54 23.5 -0.8 0.68 
14.04 0 -0.8 0.18 
14.04 13.5 -0.8 0.00 
14.04 23.5 -0.8 0.37 
6.75 0 -0.8 0.33 
6.75 13.5 -0.8 0.13 
6.75 23.5 -0.8 0.51 
0.54 0 -0.8 0.62 
0.54 13.5 -0.8 0.45 
0.54 23.5 -0.8 0.77  

 

Manus arm at the height of a coffee table is shown in Figure 4.13. Access to an 

object to the side of the operator is good and has its highest value of n (0.79) left of the 

operator’s hand (0.54, 23.5, -5.82).  

The average n-value for this plane is good at 0.44. The arm has lower accessibility 

near the centerline of the wheelchair (y = 0) compared with the outer edge of the 

workspace (y = 23.5).  
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Figure 4.13 : Manus x-y Plane @ z = -5.82” 

Table 4.12 : Data for Manus at z = -5.82” 

x y z n 
27.54 0 -5.82 0.56 
27.54 13.5 -5.82 0.38 
27.54 23.5 -5.82 0.71 
14.04 0 -5.82 0.23 
14.04 13.5 -5.82 0.00 
14.04 23.5 -5.82 0.41 
6.75 0 -5.82 0.37 
6.75 13.5 -5.82 0.18 
6.75 23.5 -5.82 0.55 
0.54 0 -5.82 0.66 
0.54 13.5 -5.82 0.49 
0.54 23.5 -5.82 0.79 

 
 

  

Closer to the ground, the measure begins to rise and access to an electric socket (z 

= -13.8” Figure 4.14) is excellent to the side of the chair and still very high in front of the 

wheelchair. It can be noted here that this is the lowest plane that still has good or better 

qualitative rating.  

The average n-value for this plane is good at 0.52 but the range of manipulability 

measures within this plane is larger than other planes. The lowest reachable n-value is 

0.27 and the highest is 0.83. 
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Figure 4.14 : Manus x-y Plane @ z = -13.8” 

Table 4.13 : Data for Manus at z = -13.8” 

x y z n 
27.54 0 -13.8 0.64 
27.54 13.5 -13.8 0.48 
27.54 23.5 -13.8 0.77 
14.04 0 -13.8 0.33 
14.04 13.5 -13.8 0.00 
14.04 23.5 -13.8 0.51 
6.75 0 -13.8 0.47 
6.75 13.5 -13.8 0.27 
6.75 23.5 -13.8 0.64 
0.54 0 -13.8 0.72 
0.54 13.5 -13.8 0.58 
0.54 23.5 -13.8 0.83 

 
 

 

For tall objects on the ground, accessibility is very good directly to the front of 

and to the sides of the wheelchair. Reaching this plane is best from the side of the 

wheelchair with the average value along the right side of the plane being 0.62. Overall 

the plane has a good average n-value of 0.50.  
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Figure 4.15 : Manus x-y Plane @ z = - 22.8” 

Table 4.14 : Data for Manus at z = -22.8” 

x y z n 
27.54 0 -22.8 0.61 
27.54 13.5 -22.8 0.50 
27.54 23.5 -22.8 0.66 
14.04 0 -22.8 0.37 
14.04 13.5 -22.8 0.00 
14.04 23.5 -22.8 0.53 
6.75 0 -22.8 0.50 
6.75 13.5 -22.8 0.32 
6.75 23.5 -22.8 0.61 
0.54 0 -22.8 0.65 
0.54 13.5 -22.8 0.57 
0.54 23.5 -22.8 0.66 

 
 

 

Objects low to the ground, shown in Figure 4.16, are at the lower limit of the 

reach of the Manus manipulator. The arm is not capable of reaching objects in the far 

corners of the workspace on the horizontal plane at z = -29.8”. The average n-value for 

all the points on the plane is 0.10. This means that the manipulator has very limited 

access to the plane. 

It is interesting to note that regions where the arm traditionally has lower 

manipulability measures are the areas that have the highest measures at z = -29.8”. These 

zones are the vertical lines that share the points (27.54, 13.5, z) and (14.04, 23.5, z). 
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Figure 4.16 : Manus x-y Plane @ z = - 29.8” 

Table 4.15 : Data for Manus at z = -29.8” 

x y z n 
27.54 0 -29.8 0.00 
27.54 13.5 -29.8 0.22 
27.54 23.5 -29.8 0.00 
14.04 0 -29.8 0.23 
14.04 13.5 -29.8 0.00 
14.04 23.5 -29.8 0.20 
6.75 0 -29.8 0.25 
6.75 13.5 -29.8 0.21 
6.75 23.5 -29.8 0.00 
0.54 0 -29.8 0.00 
0.54 13.5 -29.8 0.12 
0.54 23.5 -29.8 0.00 

 
 

 

A summary of effectiveness in reaching areas common to activities of daily living 

(ADL) is shown in Table 4.16. The qualitative assessment is based on the average of the 

normalized manipulability measure of all possible wheelchair orientations possible to 

accomplish the task. Six possible qualitative assessments could be given for each task. 

These qualitative assessments were first shown in Figure 4.2 and are: excellent, very 

good, good, limited, very limited, and undefined or unreachable. 

For example, an object can be picked off the ground from in front of the 

wheelchair as well as along the side. The average of all the recorded values for the 

normalized manipulability measure (n) along the entire perimeter of the wheelchair at the 

plane of the specific activity of daily living is shown in the second column of Table 4.16.   

Each row involved only one horizontal plane except for picking up objects on the 

ground and access to mouth. For the ADL “Pick-up off Ground” the average value for the 

perimeter of the chair was taken for the two lowest planes (z = -22.8” and z = -29.8”). 

The ADL “Access to mouth” took the average of three points on two vertical planes x = 

0” and x = -4”. Because head position may not be perfectly in the centerline of the 

wheelchair points, y = 4”, 0”, -4” were averaged at both head heights (z = 13.5” and z = 

16.5”).  
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The method used for determining the qualitative efficacy of a manipulator is not 

orientation-specific. In every instance of ADL analysis, there was a wheelchair 

orientation that would provide a higher normalized manipulability measure than the value 

listed in Table 4.16. If the operator is given the ability to maneuver the wheelchair into a 

specific position for the job, the manipulator would be able to have a greater 

manipulability measure for that goal. 

 

Table 4.16 : Qualitative Summary of Manus Effectiveness 

Pick-up off ground 0.33 Limited 

Coffee table 0.57 Good 

Door knob 0.53 Good 

Kitchen countertop 0.54 Good 

Light switch 0.65 Very Good 

Low kitchen shelf 0.64 Very Good 

Reach into lap 0.57 Good 

Access to mouth 0.81 Excellent 

 

 The Manus manipulator provided excellent (0.81) access to the mouth of the 

operator. The ability to do tasks above the kitchen countertop height such as reach a light 

switch and reach a low kitchen shelf was very good. Reaching from the side of the 

operator would yield the highest manipulability measures from the arm. 

 Access to a coffee table and the operator’s lap were close to very good and had a 

qualitative rating of good (0.57). The ability to reach a doorknob and a kitchen countertop 

were both good (0.53 and 0.54 respectively). 

 Finally, the lowest value for the activities listed in Table 4.16 was reaching the 

floor. Access to the floor was limited with a value of 0.33.  
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4.2 Evaluation of the Raptor 

 The next system to be analyzed is the Raptor. Because all power 

wheelchairs are constructed differently, the mount used in this application is specific to 

the chair that was available. Of the two manipulators that were analyzed, only the Raptor 

was available for direct measurements of the complete system. The power wheelchair 

that the solid model was created from was a Storm Series “Arrow”.  

The Raptor motor fit under the chair but there was difficulty finding a satisfactory 

mounting position with the factory-provided mounts. To solve the problem, replacement 

mounting brackets were fabricated from aluminum in order to achieve a level of 

structural integrity that showed the overall stiffness of the robotic arm without the 

mounting adding to positioning error. With the Raptor manipulator mounted securely, a 

significant amount (1” - 2”) of play could be felt at the end effector.  
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Figure 4.17 : Raptor Reference Frames 

 

Figure 4.17 represents the Raptor mounted to a generic power wheelchair along with the 

corresponding frames of reference (frames 0 to G). 

Table 4.17 shows the D-H parameter table for the Raptor with 3DOF. This table 

of D-H parameters, along with Figure 4.17 and Equation 3.2, are used to create the 

transformation matrix which relates the link i with previous link i-1. These individual 

transformation matrices for each link are shown after the table of parameters. There is 

also a row for the fourth link. This link connects the gripper to the third joint. It is purely 

a translational relation, so the coordinate system for the third joint and the gripper have 

the same orientation. 
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Table 4.17 : Raptor D-H Parameters 

i αi−1 ai-1 di θi  
1 0° 0 5 θ1 

2 90° 0 27 θ2 

3 -90° 0 0 θ3 

4 0° 15.75 0 0 
 

Inserting the transformation matrices from the DH-Parameter into the table shown 

in Table 4.17 provides the transformation matrix that relates frame 1 with respect to 

frame 0 (Equation 4.10). 

T1wrt0

cos θ1( )
sin θ1( )

0

0

sin θ1( )−

cos θ1( )
0

0

0

0

1

0

0

0

0

1














:=

 

Equation 4.10 

 

 

 

The transformation matrix which relates frame 2 with respect to frame 1 is shown in 

Equation 4.11. 

T2wrt1

sin θ2( )
0

cos θ2( )
0

cos θ2( )
0

sin θ2( )−

0

0

1

0

0

0

27

0

1














:=

 

Equation 4.11 

 

 

The transformation matrix which relates frame 3 with respect to frame 2 is shown in 

Equation 3.9 the Equation below. 

T3wrt2

cos θ3( )
0

sin θ3( )
0

sin θ3( )−

0

cos θ3( )
0

0

1−

0

0

0

0

0

1














:=

 

Equation 4.12 
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The transformation matrix which relates frame G, or the frame of the gripper, with 

respect to frame 3 is shown in Equation 4.13. 

TGwrt3

1

0

0

0

0

1

0

0

0

0

1

0

18.38

0

0

1












:=

 

Equation 4.13 

 

 

 

It is necessary to work with a frame that has correlation to the user, therefore a user frame 

must be created. Equation 4.14  shows the transformation matrix which defines the 

translational relationship between frame 0 with respect to the user frame. 

T0wrtU

1

0

0

0

0

0

1

0

0

1−

0

0

6.30−

13.46−

16.16−

1












:=

 

Equation 4.14 

 

 

Concatenation of the transformation matrices is shown in Equation 4.15, to give the 

transform relating the end gripper position with respect to the user frame. This will be the 

complete transformation matrix.  

T0wrtU*T1wrt0*T2wrt1*T3wrt2*TGwrt3 = TGwrtU Equation 4.15 

 

The final transformational matrix is shown in Equation 4.16 the figure below. 
cos θ1( ) sin θ2( )⋅ cos θ3( )⋅ sin θ1( ) sin θ3( )⋅−

cos θ2( )− cos θ3( )⋅

sin θ1( ) sin θ2( )⋅ cos θ3( )⋅ cos θ1( ) sin θ3( )⋅+

0

cos θ1( )− sin θ2( )⋅ sin θ3( )⋅ sin θ1( ) cos θ3( )⋅−

cos θ2( ) sin θ3( )⋅

sin θ1( )− sin θ2( )⋅ sin θ3( )⋅ cos θ1( ) cos θ3( )⋅+

0

cos θ1( )− cos θ2( )⋅

sin θ2( )−

sin θ1( )− cos θ2( )⋅

0

18.38 cos θ1( )⋅ sin θ2( )⋅ cos θ3( )⋅ 18.38 sin θ1( )⋅ sin θ3( )⋅− 6.30 27 sin θ1( )⋅−+

18.38− cos θ2( )⋅ cos θ3( )⋅ 13.46−

18.38 sin θ1( )⋅ sin θ2( )⋅ cos θ3( )⋅ 18.38 cos θ1( )⋅ sin θ3( )⋅ 16.16−+ 27 cos θ1( )⋅+

1












  

Equation 4.16 

 

The position vector, a 3x1 matrix, is the first three rows of the final column of the 

final transformational matrix and is shown in the figure below. This matrix is also known 
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as the forward kinematic matrix. When the three joint angles are input, the result is the 

position vector (Equation 4.17) of the gripper with respect to the user frame. 

18.38 cos θ1( )⋅ sin θ2( )⋅ cos θ3( )⋅ 18.38 sin θ1( )⋅ sin θ3( )⋅− 6.30− 27 sin θ1( )⋅−

18.38− cos θ2( )⋅ cos θ3( )⋅ 13.46−

18.38 sin θ1( )⋅ sin θ2( )⋅ cos θ3( )⋅ 18.38 cos θ1( )⋅ sin θ3( )⋅ 16.16−+ 27 cos θ1( )⋅+








 

Equation 4.17 

 

From the forward kinematic matrix we can compute the Jacobian Matrix  - the 

partial derivatives of the positional matrix as shown Equation 4.18. Due to the size of the 

Jacobian, the matrix will be displayed one column at a time.  

Column 1: 
-18.38*sin(t1)*sin(t2)*cos(t3)-18.38(t1)*sin(t3)-27*cos(t1) 

0 
18.38*cos(t1)*sin(t2)*cos(t3)-18.38*sin(t1)*sin(t3)-27*sin(t1) 

Equation 4.18 

 

Column 2: 
18.38*cos(t1)*cos(t2)*cos(t3) 

18.38*sin(t2)*cos(t3) 
18.38*sin(t1)*cos(t2)*cos(t3) 

 

Column 3: 
-18.38*cos(t1)*sin(t2)*sin(t3)-18.38*sin(t1)*cos(t3) 

18.38*cos(t2)*sin(t3) 
-18.38*sin(t1)*sin(t2)*sin(t3)+18.38*cos(t1)*cos(t3) 

 

4.2.1 Vertical Planes 

The following figures show the manipulability measures for the Raptor arm as 

mounted on the Arrow Storm Series power wheelchair.  

After all data points were collected, the maximum manipulability measure for the 

Raptor was found to be 9121.0 at the point [-4,-13.5,16.5].  

 

Comments regarding the data: 
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As shown in Figure 4.18, the Raptor is incapable of reaching objects on a high 

shelf. At this distance of 27.54” in front of the user frame, operating a light switch is only 

possible when directly in line with the plane of the first link’s rotation (xz plane where y 

= -13.5”), which also is the plane that has maximum manipulability measure values.  

The Raptor has very good manipulability from the ground to the height of a low 

coffee table (z = - 5.82”) and still has good manipulability at the height of a standard 

table (z = - 0.8”).   

At this distance from the user frame, the arm is not capable of reaching objects on 

a low shelf (z = 24.18). A light switch can only be manipulated directly along a lateral 

line of y = -13.5”.  
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Figure 4.18 : Raptor y-z Plane @ x = 27.54” 

Table 4.18 : Data for Raptor at x = 27.54” 

x y z n 
27.54 0 -29.8 0.46 
27.54 -13.5 -29.8 0.93 
27.54 -23.5 -29.8 0.70 
27.54 0 -22.8 0.58 
27.54 -13.5 -22.8 0.98 
27.54 -23.5 -22.8 0.79 
27.54 0 -13.8 0.60 
27.54 -13.5 -13.8 0.99 
27.54 -23.5 -13.8 0.80 
27.54 0 -5.82 0.53 
27.54 -13.5 -5.82 0.97 
27.54 -23.5 -5.82 0.76 
27.54 0 -0.8 0.40 
27.54 -13.5 -0.8 0.90 
27.54 -23.5 -0.8 0.66 
27.54 0 6.18 0.00 
27.54 -13.5 6.18 0.66 
27.54 -23.5 6.18 0.35 
27.54 0 18.2 0.00 
27.54 -13.5 18.2 0.24 
27.54 -23.5 18.2 0.00 
27.54 0 24.18 0.00 
27.54 -13.5 24.18 0.00 
27.54 -23.5 24.18 0.00 

 
 

 

From Figure 4.19 it can be seen that the ability of the Raptor manipulator to reach 

low kitchen cabinet shelves is very limited.  

At this distance (x = 14.04”) the operator would have to position his/her feet 

approximately 20” under a countertop. This is not possible with some kitchen designs2. 

At this distance, accessibility of objects on tables and countertops is excellent from the 

front. Access to all levels except for the low shelf is very good from the side.  
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Figure 4.19 : Raptor y-z Plane @ x = 14.04” 

Table 4.19 : Data for Raptor at x = 14.04” 

x y z n 
14.04 0 -29.8 0.59 
14.04 -13.5 -29.8 0.78 
14.04 -23.5 -29.8 0.70 
14.04 0 -22.8 0.48 
14.04 -13.5 -22.8 0.62 
14.04 -23.5 -22.8 0.57 
14.04 0 -13.8 0.44 
14.04 -13.5 -13.8 0.57 
14.04 -23.5 -13.8 0.53 
14.04 0 -5.82 0.53 
14.04 -13.5 -5.82 0.70 
14.04 -23.5 -5.82 0.63 
14.04 0 -0.8 0.62 
14.04 -13.5 -0.8 0.82 
14.04 -23.5 -0.8 0.73 
14.04 0 6.18 0.68 
14.04 -13.5 6.18 0.98 
14.04 -23.5 6.18 0.83 
14.04 0 18.2 0.00 
14.04 -13.5 18.2 0.72 
14.04 -23.5 18.2 0.42 
14.04 0 24.18 0.00 
14.04 -13.5 24.18 0.04 
14.04 -23.5 24.18 0.00 

 
 

 

 At the yz-plane where x = 6.75”, shown in Figure 4.20, the Raptor is finally able 

to reach objects on low shelves with more than a minimal value. The ability to reach 

objects to the side of the chair begins to drop off, although it still can reach the ground 

with a good manipulability measure. Access to the side at this plane is good but all eight 

horizontal planes can be reached at this distance from the operator. This is the only 

vertical plane that offers this ability to reach all horizontal planes with the Raptor.  
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Figure 4.20 : Raptor y-z Plane @ x = 6.75” 

Table 4.20 : Data for Raptor at x = 6.75” 

x y z n 
6.75 0 -29.8 0.36 
6.75 -13.5 -29.8 0.49 
6.75 -23.5 -29.8 0.45 
6.75 0 -22.8 0.06 
6.75 -13.5 -22.8 0.26 
6.75 -23.5 -22.8 0.23 
6.75 0 -13.8 0.00 
6.75 -13.5 -13.8 0.19 
6.75 -23.5 -13.8 0.16 
6.75 0 -5.82 0.23 
6.75 -13.5 -5.82 0.37 
6.75 -23.5 -5.82 0.34 
6.75 0 -0.8 0.42 
6.75 -13.5 -0.8 0.56 
6.75 -23.5 -0.8 0.51 
6.75 0 6.18 0.63 
6.75 -13.5 6.18 0.84 
6.75 -23.5 6.18 0.75 
6.75 0 18.2 0.44 
6.75 -13.5 18.2 0.92 
6.75 -23.5 18.2 0.68 
6.75 0 24.18 0.00 
6.75 -13.5 24.18 0.46 
6.75 -23.5 24.18 0.02 

 
 

 

  In order to gain the highest manipulability measure in the low cabinets, the 

operator will have to approach the cabinet shelf from the side. This yz-plane is 

represented in Figure 4.21. The measure at this point is only moderate but this is the 

highest value available. Access to objects lower than a kitchen counter begins to diminish 

due to a singularity of the arm at the height of an electric socket (z = - 13.8”). 
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Figure 4.21 : Raptor y-z Plane @ x = 0.54” 

Table 4.21 : Data for Raptor at x = 0.54” 

x y z n 
0.54 0 -29.8 0.00 
0.54 -13.5 -29.8 0.29 
0.54 -23.5 -29.8 0.27 
0.54 0 -22.8 0.00 
0.54 -13.5 -22.8 0.00 
0.54 -23.5 -22.8 0.13 
0.54 0 -13.8 0.00 
0.54 -13.5 -13.8 0.00 
0.54 -23.5 -13.8 0.00 
0.54 0 -5.82 0.00 
0.54 -13.5 -5.82 0.15 
0.54 -23.5 -5.82 0.10 
0.54 0 -0.8 0.24 
0.54 -13.5 -0.8 0.38 
0.54 -23.5 -0.8 0.35 
0.54 0 6.18 0.55 
0.54 -13.5 6.18 0.72 
0.54 -23.5 6.18 0.65 
0.54 0 18.2 0.55 
0.54 -13.5 18.2 0.97 
0.54 -23.5 18.2 0.77 
0.54 0 24.18 0.00 
0.54 -13.5 24.18 0.63 
0.54 -23.5 24.18 0.31 

 
 

 

The Raptor has its highest manipulability measure at the point [0,-13.5, 16.5] 

which is shown in Figure 4.22. The ability to manipulate objects is excellent toward the 

operator’s right side but rapidly diminishes once the centerline of the arm is reached. 

Objects slightly above the lap of the operator have a limited manipulability measure. The 

manipulator is unable to access an object to the left of the centerline (y = 0) of the 

wheelchair.  

Two of the most important activities of daily living are eating and drinking. 

Because of the significance of these actions, two planes are created specifically to 

evaluate manipulator effectiveness near the mouth and head (Figure 4.22 and Figure 
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4.23). The density of the data points is increased and extends beyond the centerline of the 

chair. Both figures show that the manipulability measure is very high toward the outer 

edge of the defined workspace to both heights (z = 13.5” and z = 16.5”) and is still very 

good at the operator’s mouth.  

Figure 4.22 : Raptor y-z Plane @ x = 0” 

Table 4.22 : Data for Raptor at x = 0” 

x y z n 
0 6.75 0 0.00 
0 4 0 0.00 
0 0 0 0.28 
0 -4 0 0.38 
0 -6.75 0 0.40 
0 -13.5 0 0.40 
0 -23.5 0 0.38 
0 6.75 13.5 0.00 
0 4 13.5 0.27 
0 0 13.5 0.68 
0 -4 13.5 0.85 
0 -6.75 13.5 0.92 
0 -13.5 13.5 0.98 
0 -23.5 13.5 0.84 
0 6.75 16.5 0.00 
0 4 16.5 0.00 
0 0 16.5 0.63 
0 -4 16.5 0.84 
0 -6.75 16.5 0.92 
0 -13.5 16.5 1.00 
0 -23.5 16.5 0.82 
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Figure 4.23 : Raptor y-z Plane @ x = -4” 

Table 4.23 : Data for Raptor at x = -4” 

x y z n 
-4 6.75 13.5 0.00 
-4 4 13.5 0.28 
-4 0 13.5 0.68 
-4 -4 13.5 0.84 
-4 -6.75 13.5 0.91 
-4 -13.5 13.5 0.97 
-4 -23.5 13.5 0.83 
-4 6.75 16.5 0.00 
-4 4 16.5 0.01 
-4 0 16.5 0.64 
-4 -4 16.5 0.85 
-4 -6.75 16.5 0.93 
-4 -13.5 16.5 1.00 
-4 -23.5 16.5 0.83 

 
 

 

4.2.2 Horizontal Planes 

Starting from the plane of a low kitchen shelf, Figure 4.24 shows that the Raptor 

is able to reach objects from the side of the wheelchair directly to the right of the 

operator. Although these points can be reached, the access to them is minimal.  

 The average n-value of the horizontal plane is very limited at 0.12.  
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Figure 4.24 : Raptor x-y Plane @ z = 24.18” 

Table 4.24 : Data for Raptor z = 24.18” 

x y z n 
27.54 0 24.18 0.00 
27.54 -13.5 24.18 0.00 
27.54 -23.5 24.18 0.00 
14.04 0 24.18 0.00 
14.04 -13.5 24.18 0.04 
14.04 -23.5 24.18 0.00 
6.75 0 24.18 0.00 
6.75 -13.5 24.18 0.46 
6.75 -23.5 24.18 0.02 
0.54 0 24.18 0.00 
0.54 -13.5 24.18 0.63 
0.54 -23.5 24.18 0.31 

 
 

 

At the level of a wall-mounted light switch the manipulability measure increases 

compared to the highest plane. The gripper is able to reach a light switch both from 

directly in front of the arm and to the side of the chair. Access to objects to the side of the 

operator is good. This would be the preferred wheelchair orientation when attempting to 

actuate a light switch. 

Figure 4.25 shows that access to the light switch directly in front of the arm is 

limited, while along the side of the chair the manipulability measures are very good. 

The average n-value for this plane is good at 0.48. 
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Figure 4.25 : Raptor x-y Plane @ z = 18.2” 

Table 4.25 : Data for Raptor z = 18.2” 

x y z n 
27.54 0 18.2 0.00 
27.54 -13.5 18.2 0.24 
27.54 -23.5 18.2 0.00 
14.04 0 18.2 0.00 
14.04 -13.5 18.2 0.72 
14.04 -23.5 18.2 0.42 
6.75 0 18.2 0.44 
6.75 -13.5 18.2 0.92 
6.75 -23.5 18.2 0.68 
0.54 0 18.2 0.55 
0.54 -13.5 18.2 0.97 
0.54 -23.5 18.2 0.77 

 
 

 

At kitchen countertop level (Figure 4.26) the Raptor has very good to excellent 

access to the sides of the chair, while access to the front of the chair is moderate. At this 

point, the gripper is unable to reach directly in front of the operator.  

Access to objects to the side of the wheelchair is very good to excellent. This is 

the highest plane that the manipulator can reach an object in the far right corner of the 

workspace.  

Overall the plane has the highest average manipulability measures of all the 

horizontal planes analyzed at 0.64 with a very good qualitative assessment. This is the 

maximum average n-value for any horizontal plane.  
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Figure 4.26 : Raptor x-y Plane @ z = 6.18” 

Table 4.26 : Data for Raptor z= 6.18” 

x y z n 
27.54 0 6.18 0.00 
27.54 -13.5 6.18 0.66 
27.54 -23.5 6.18 0.35 
14.04 0 6.18 0.68 
14.04 -13.5 6.18 0.98 
14.04 -23.5 6.18 0.83 
6.75 0 6.18 0.63 
6.75 -13.5 6.18 0.84 
6.75 -23.5 6.18 0.75 
0.54 0 6.18 0.55 
0.54 -13.5 6.18 0.72 
0.54 -23.5 6.18 0.65 

 
 

 

The Raptor is able to reach objects directly in front of the operator at the height of 

a standard table (Figure 4.27). At this elevation and below, the manipulator has limited 

access to objects directly in front of the operator and the manipulator is able to access all 

twelve points in the workspace. This is the only plane above the seat of the wheelchair 

that this occurs.  

To open a door the operator would have a greatest chance for success by 

approaching the door directly in front of the manipulator (y = -13.5”). The average n-

value for this plane is good at 0.55.  

Manipulability is at its highest level on this plane at x = 27.54 and decreases 

steadily as you approach x = 0.54 except for the x-z plane at y = 0. 
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Figure 4.27 : Raptor x-y Plane @ z = -0.8 

Table 4.27 : Data for Raptor z = -0.8” 

x y z n 
27.54 0 -0.8 0.40 
27.54 -13.5 -0.8 0.90 
27.54 -23.5 -0.8 0.66 
14.04 0 -0.8 0.62 
14.04 -13.5 -0.8 0.82 
14.04 -23.5 -0.8 0.73 
6.75 0 -0.8 0.42 
6.75 -13.5 -0.8 0.56 
6.75 -23.5 -0.8 0.51 
0.54 0 -0.8 0.24 
0.54 -13.5 -0.8 0.38 
0.54 -23.5 -0.8 0.35 

 
 

 

  

At the height of a coffee table (Figure 4.28) access to all points in front of the operator is 

good to excellent. The ability to reach objects to the side of the operator continues to 

decrease. The average n-value of the plane is good at 0.44. 
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Figure 4.28 : Raptor x-y Plane @ z = - 5.82” 

 

Table 4.28 : Data for Raptor z = -5.82” 

x y z n 
27.54 0 -5.82 0.53 
27.54 -13.5 -5.82 0.97 
27.54 -23.5 -5.82 0.76 
14.04 0 -5.82 0.53 
14.04 -13.5 -5.82 0.70 
14.04 -23.5 -5.82 0.63 
6.75 0 -5.82 0.23 
6.75 -13.5 -5.82 0.37 
6.75 -23.5 -5.82 0.34 
0.54 0 -5.82 0.00 
0.54 -13.5 -5.82 0.15 
0.54 -23.5 -5.82 0.10 

 
 

 

Access to objects to the side of the chair is at its lowest point value at z = - 13.8” 

(Figure 4.29). This is due primarily to the link geometry, the first link is 27” long and the 

second is 17.5” long, their difference of 9.5” means that the Raptor is incapable reaching 

objects that are closer than 9.5” to the frame 0 [-6.26, -13.5, -16.18] . 

The average n-value (0.36) for this plane is limited which is the lowest of all the 

horizontal planes evaluated. 
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Figure 4.29 : Raptor x-y Plane @ z = - 13.8” 

Table 4.29 : Data for Raptor z = -13.8” 

x y z n 
27.54 0 -13.8 0.60 
27.54 -13.5 -13.8 0.99 
27.54 -23.5 -13.8 0.80 
14.04 0 -13.8 0.44 
14.04 -13.5 -13.8 0.57 
14.04 -23.5 -13.8 0.53 
6.75 0 -13.8 0.00 
6.75 -13.5 -13.8 0.19 
6.75 -23.5 -13.8 0.16 
0.54 0 -13.8 0.00 
0.54 -13.5 -13.8 0.00 
0.54 -23.5 -13.8 0.00 

 
 

 

Near the ground, the manipulability measure does not change significantly for 

high and low objects on the floor (Figure 4.30 and Figure 4.31). Low objects on the floor 

can be accessed from the front as well as the side of the chair.  

Along the side of the wheelchair the manipulability measure drops the farther 

back the object is and objects directly to the right of the operator is very limited. 

The average n-value for this plane is limited at 0.39.  
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Figure 4.30 : Raptor x-y Plane @ z = - 22.8” 

Table 4.30 : Data for z = -22.8” 

x y z n 
27.54 0 -22.8 0.58 
27.54 -13.5 -22.8 0.98 
27.54 -23.5 -22.8 0.79 
14.04 0 -22.8 0.48 
14.04 -13.5 -22.8 0.62 
14.04 -23.5 -22.8 0.57 
6.75 0 -22.8 0.06 
6.75 -13.5 -22.8 0.26 
6.75 -23.5 -22.8 0.23 
0.54 0 -22.8 0.00 
0.54 -13.5 -22.8 0.00 
0.54 -23.5 -22.8 0.13 

 
 

 

An interesting note is that there is an apparent horizontal line of symmetry 

approximately between z = - 22.8” and z = - 5.82”. The true plane of symmetry would be 

the horizontal plane that the first rotational axis rests (z = - 16.18).   

The average n-value for this plane is good at 0.50 with the highest point within 

the workspace is at (27.54, -13.5).  
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Figure 4.31 : Raptor x-y Plane @ z = -29.8” 

Table 4.31 : Data for Raptor at z = -29.8” 

x y z n 
27.54 0 -29.8 0.46 
27.54 -13.5 -29.8 0.93 
27.54 -23.5 -29.8 0.70 
14.04 0 -29.8 0.59 
14.04 -13.5 -29.8 0.78 
14.04 -23.5 -29.8 0.70 
6.75 0 -29.8 0.36 
6.75 -13.5 -29.8 0.49 
6.75 -23.5 -29.8 0.45 
0.54 0 -29.8 0.00 
0.54 -13.5 -29.8 0.29 
0.54 -23.5 -29.8 0.27 

 
 

 

A summary of the Raptor’s effectiveness in reaching areas common in activities 

of daily living (ADL) is shown in Table 4.32. This table shows the task, the average 

manipulability measure of all possible wheelchair orientations that could achieve the task, 

and the qualitative assessment.  

 

Table 4.32 : Qualitative Summary of Raptor Effectiveness 

Pick-up off ground 0.57 good 

Coffee table 0.55 good 

Door knob 0.59 good 

Kitchen countertop 0.54 good 

Light switch 0.35 limited 

Low kitchen shelf 0.05 very limited 

Reach into lap 0.31 limited 

Access to mouth 0.55 good 
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Overall, the average normalized manipulability measure (n) for all the eight tasks 

in the Table 4.32 is good (0.44). For the tasks that involved reaching onto planes lower 

than a kitchen countertop oriented from the front or side, the Raptor was close to very 

good on the qualitative scale (0.54 ~ 0.59).  

Access to the lap of the operator was limited (0.31) and the values diminished as 

the goal moved closer to the operator. Additionally, the inability of the gripper to reach 

areas to the opposite of the centerline of the wheelchair limited the effectiveness of the 

arm in the operator’s lap.  

Reaching a light switch had limited access (0.35). This was due to the low 

normalized manipulability measures in front of the wheelchair. Access to the side of the 

operator was very good and as long as this wheelchair orientation was possible, the 

qualitative accessibility would be very good (0.62). 

The area least able to be reached is a low kitchen shelf. The Raptor has very 

limited access and was only able to reach the shelf in two of the six possible outer 

perimeter data points.  
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Chapter Five     Design Insights and Recommendations 
 
 
Chapter Five  Design Insights and Recommendations 
 
5.1 Design Insights 

Both of the commercially-available systems analyzed were able to pick up objects 

from the floor, reach into the operator’s immediate workspace, and manipulate objects on 

cabinets, desks and low tables. In several cases the manipulators are only able to 

manipulate objects in certain planes from specific orientation of the chair. For example, 

when attempting to retrieve objects off the floor, the Raptor is near its maximum 

manipulability measure from the front while it is incapable of retrieving an object directly 

to the right of the user.  This would require the operator to position the chair in a specific 

orientation before attempting to manipulate an object with the arm.  

Additionally, the commercial designs appear to be well thought out, designed and 

manufactured. Through the analysis of the manipulability measure in a rehabilitation-

specific workspace, it has been shown that there are areas of weakness in both designs 

that can be improved. Several design insights and recommendations are noted below. 

 

• The Manus has very low manipulability measures at or very near the ground and 

must orient the chair with respect to the object in order to manipulate it.  

 The Manus would be more effective in retrieving objects from the floor if the 

mounting base were installed lower on the wheelchair with respect to the floor. 

The additional height increase provided by the z-axis lift device would 

compensate for its lower initial position.  

 The front mounting of the Manus provides excellent access to objects in front and 

above the operator. The vertical reach of the manipulator is very good even 

without using the z-axis lift device. All analysis was done with the Z-axis lift in 

its lowest position. 
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 Given the size of the workspace, the closer the object is to the first axis of rotation 

of the manipulator, the lower the manipulability measure will be.  

 Increasing the number of DOF of the manipulator will allow better access to some 

internal regions (near singularities) but this will come at the expense of one or 

more DOF’s of gripper orientation.  

 Low mounting position and link geometry provides the Raptor with very good 

access to objects low to the ground and items directly in front of the wheelchair.  

 The Raptor has very low manipulability when reaching into kitchen cabinets. The 

side-mount design limits how high that Raptor can be mounted with respect to the 

floor. Increasing the first link length could allow higher reach. 

 A plane of symmetry exists at a horizontal plane where the first rotational axis 

rests. This plane of symmetry relates manipulability measures above and below z 

= 16.26” (user frame).  

 Accessibility on horizontal planes is still good up to z = 6.18. This is almost twice 

the distance that the manipulator’s primary axis of rotation is above the floor.  

 The length of the final link limits the Raptor’s ability to cross the centerline of the 

wheelchair. Objects on the lap of the operator become increasingly difficult to 

manipulate as one approaches the centerline of the wheelchair.  

 The joint angle range in the third joint reduces the manipulator effectiveness. The 

arm cannot effectively reach back onto itself. The arm is not capable of reaching 

objects near the first joint motor. 

 The closer the goal is to the manipulator’s primary axis of rotation, the lower the 

manipulability measure. This is magnified by the limited joint angle range in the 

third revolute joint.  

 The highest manipulability measure for the Raptor for all horizontal planes up to z 

= -0.8” is at (27.54, -13.5).  
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5.2 Design Recommendations  

There is no single mounting location that will allow equal potential of 

manipulability for all activities of daily living. Front mounting of an arm interferes with 

the user’s ability to maneuver under desks and sinks and is a visual obstruction to social 

interaction. Side mounting increases the width of the wheelchair, making movement 

through doors and hallways more difficult. Mounting the arm in the rear of the chair 

requires longer manipulator link lengths to reach in front of the chair and this increases 

the loads on the motors and bearings. A single fixed mounting location does not allow 

access throughout the entire workspace.  

From the evaluation of the two commercial WMRAs, improvements to these 

commercially-available arms could come in two ways. First would be rail-mounting, 

allowing for front- and side-locking positions, along with a rear-locking position for the 

manipulator base. In this way, the manipulator could benefit from using the optimum 

mounting location for completing a specific ADL.  

There are a variety of uses for a manipulator in assistive rehabilitation 

applications. Additionally, a well-designed robotic arm could be mounted onto a variety 

of surfaces and locations if the arm did not have fixed link geometry. In this way, a 

WMRA could be used in a workstation application with only minor changes to link 

lengths and controller settings. Commercially-available WMRA are designed primarily 

for mounting onto wheelchairs and are not easily used as workstation manipulators. 

These arms cannot be made to fit a workstation by the end user. This limits the use of the 

manipulator and reduces its potential use in a home or office environment.  

The second enhancement would be to design the manipulator as a system of 

modular joints and link lengths. A modular manipulator design would allow the system to 

be adjusted for various geometries.  This would allow the system to be applied to 

stationary applications as well as mobile mounts. The modularity of the manipulator will 

apply both to the links and joints as well as the rail track mount. 
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5.2.1 Rail Mounted Manipulator 

 The first and most novel improvement for a WMRA is a side-mounted rail-

positioned manipulator base that is capable of multiple base positions while in use. This 

design uses the concept of having the manipulator move along a track. This was first 

developed with DeVAR, an early workstation robot design. At the time of this research, 

this mounting track method has not been applied to WMRAs.  

The base of the manipulator would rest on a detachable track that runs along the 

side of the chair from the front to the back. The entire shape of the rail would be roughly 

C-shaped with curved bends at either end. The base could then move along this track to 

three discrete points from which to operate. Additionally, the rail would need to have 

provisions for quick release, facilitating ease of transfer to and from the wheelchair.  

There would be three positions for the base of the manipulator. The first would be 

in front of the chair and would allow access to objects in front and center of the operator, 

the second position would be a side mount that is slightly behind the yz plane of the 

operator which would allow for side access and for feeding, the final position is a stow 

position which would allow the arm to be folded away when not in use. The front lock 

location would be analogous to the Manus mount while the second lock location would 

be near the Raptor position.   

Link geometries would be critical for the success of the design. There would need 

to be a compromise in the link geometry between the requirements for each base position. 

Each base position would have specific link lengths that would provide optimum 

workspace for the operator and the final link geometries of the system would be a 

compromise between the two sub-systems requirements.  

It may also be beneficial for the track to have a 90-degree twist in the track. In the 

side-mount location, the arm has its first rotational axis in the y direction and the front-

mount location has a first rotational axis in the z direction. This change in the first 

rotational axis may pose too significant a restriction on the link length geometries. The 

optimum link geometries for each base position may actually compete against each other,  

making the final compromise manipulator unacceptably inefficient.  
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The design provision of a track-mounted manipulator arm would allow for the 

user to move under desks and still use the manipulator arm in the side mount mode or 

move through doors and confined areas with the manipulator arm, stowed in the rear 

position, folded up safely behind the wheelchair.  

 

5.2.2 Reconfigurable Manipulator 

The other design recommendation for the manipulator is that it be reconfigurable, 

modular, and aesthetically pleasing to the user. Reconfigurability would be a beneficial 

aspect for the robotic arm because the real world cannot be rearranged so that a fixed 

manipulator can be more efficient. Often it is not possible to mount a manipulator in the 

optimum location for its intended task. This was the case with the mounting of the Raptor 

arm. The power wheelchair’s structure did not allow the motor to be affixed as high as 

necessary for an optimum mounting location.  

Individual arm link lengths can be modified to create a robotic arm workspace 

that matches actual workspace requirements. Because both power wheelchairs and 

workspaces vary in size and construction, a modular approach to link lengths design and 

joint construction should be utilized. This modularity would allow the installer to custom 

tailor the links to better fit the mounting location.  

Modularity is addressed through the use of easily-altered revolute joints which 

allow for changes to the number of degrees of freedom in the arm with only simple 

change of components. Thus the arm can be designed around the user’s requirements and 

not vice versa. Controller design would incorporate configuration changes and compute 

inverse kinematics of the revised design. 

Finally, a design that can be used in several applications would provide a greater 

function per dollar by allowing one general manipulator to serve multiple roles. A 

reconfigurable modular manipulator could be mounted on a wheelchair, mobile base, or 

within a workstation. The increased functionality of the arm could allow for improved 

market share. The potential benefit from the higher production rates would be a decrease 

in cost of the manipulator.   



www.manaraa.com

 
 84

 
 
 
Chapter Six Summary and Future Work 
 
Chapter Six  Summary and Future Work 

 

There has been significant progress in bringing commercially-viable WMRAs 

into the marketplace in the past 30 years. Of these devices, the Manus arm has seen the 

most development, though mostly in Europe. There is still much progress to be made in 

order to minimize user effort and reduce operator fatigue. Over the operational life of 

WMRAs they are cost-effective yet their high initial cost has been a prohibitive barrier 

for many users.  

6.1 Design Recommendations and Insights 

 Link lengths need to be kept as short as possible to reduce dynamic loads. While 

longer links allow for greater values of manipulability measure, they require greater 

encoder precision to achieve the same level of precision as a shorter link. 

 Mounting the arm closer to the ground biases the arm’s ability to manipulating 

objects close to the ground, desks and countertops. While a rear mount would solve the 

problems of increased chair width and visual obstruction, it can cause further difficulties 

with link geometries. 

The Raptor design, while very good at manipulating objects in front of the 

wheelchair, was challenged to reach into the lower cabinet at almost any orientation. The 

Raptor link geometries could be slightly modified to allow access to low cabinets and 

provide better access across the centerline of the wheelchair. 

The mounting location of the Manus allowed for excellent access to low shelves 

and desks but suffered from internal singularities which limited its ability to manipulate 

objects close to its base. The internal singularities caused difficulties for the inverse 

kinematic program to determine the proper joint angles. Often the start point of the arm 

had to be changed several times in order for the gripper frame to reach the goal. 
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6.2 Future Work  

There are both software- and hardware-based methods to further the work done in 

this thesis. The software development would further the inverse kinematic program 

(robot.m) and the hardware advancement would create virtual manipulators using track 

mount and modular links. These hardware models would use both the Manus and Raptor 

as a baseline for comparison. 

Modify robot.m to create automatic mesh generation within the workspace. This 

would determine manipulability measures throughout the workspace with user-defined 

grid density. The software program that determined the inverse kinematics of the Manus 

and Raptor had several limitations. The robot.m program required manual entry of the 

desired gripper position and could only determine one solution at a time. A better study 

of the entire workspace would be achieved with a denser map of the manipulability 

measures. For each arm, the smallest grid analyzed was 6.21” by 10” by 5.02” with a 

total number of 131 data points. 

Integrate the inverse kinematic program with Solid WORKS by creating an 

interface so that solutions from the inverse kinematic program can be input into Solid 

WORKS to create real-time simulations of the arm within the workspace.  

Hardware development would be based on the concept of the rail-mounted multi-

position manipulator. The use of both operating positions would be fundamental in the 

analysis because the manipulator should function equally in each position and the sum of 

the manipulability of both positions should be greater than the manipulability of the 

commercial designs.  

Although only given a cursory look in this thesis, the use of modular links and 

joints in a reconfigurable design would make a WMRA more versatile so that it could be 

used in a variety of applications. This flexibility would allow a production arm to fill 

more niches and increase the number of unit sales, further decreasing unit cost and 

increasing availability of the unit.  

While this thesis has focused solely on a procedure for kinematic analysis and 

evaluation of manipulators, a manipulator is only a series of motors, encoders, gearboxes, 
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wires, and links without a controller. Controller design is a vital consideration when 

designing a complete robotic manipulator system. The greatest gains for robotic 

manipulators in rehabilitation applications will come from advanced controllers that are 

easily programmed and operated. 
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Appendix A: Manipulability Data 
 
Manus Data from the Inverse kinematics program: 
x,y,z are the position vector, inputs 
n is the normalized manipulability measure.  
Manip is the actual manipulability measure; no values for the theta columns indicates that 
the point was unobtainable 
 

 
desired 
position      

required 
angles 
(radians)    

x y z  n  Theta 1  Theta 2 Theta 3  Manip 
14.04 0 -29.8  0.23  -2.2227 2.5172 0.6609  1546.7 
14.04 13.5 -29.8  0.00      0 
14.04 23.5 -29.8  0.20  1.2464 2.5616 0.3721  1344.2 
           
14.04 0 -22.8  0.37  -2.2235 2.0072 1.4476  2491.4 
14.04 13.5 -22.8  0.00      0 
14.04 23.5 -22.8  0.53  1.2464 1.9539 1.2999  3562.2 
           
14.04 0 -13.8  0.33  -2.2243 1.4552 2.0769  2197.9 
14.04 13.5 -13.8  0.00      0 
14.04 23.5 -13.8  0.51  1.2464 1.3794 1.9203  3473.5 
           
14.04 0 -5.82  0.23  -2.2234 0.7967 2.491  1526.9 
14.04 13.5 -5.82  0.00      0 
14.04 23.5 -5.82  0.41  1.2464 0.7835 2.284  2796 
           
14.04 0 -0.8  0.18  -2.2234 0.19999 2.6498  1190.5 
14.04 13.5 -0.8  0.00      0 
14.04 23.5 -0.8  0.37  1.2464 0.3467 2.4039  2486.6 
           
14.04 0 6.18  0.19  -2.2234 -0.519 2.6043  1290.4 
14.04 13.5 6.18  0.00      0 
14.04 23.5 6.18  0.38  1.2464 -0.1684 2.3711  2574.9 
           
14.04 0 18.2  0.34  -2.2234 -0.6703 2.0199  2271.2 
14.04 13.5 18.2  0.00      0 
14.04 23.5 18.2  0.52  1.2464 -0.4019 1.8678  3535.1 
           
14.04 0 24.18  0.37  -2.2234 -0.5335 1.6115  2519.1 
14.04 13.5 24.18  0.00      0 
14.04 23.5 24.18  0.54  1.2464 -0.3054 1.4699  3678.2 
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Appendix A (Continued) 
 
Manus data from the inverse kinematics program: 
 

 
desired 
position      

required 
angles 
(radians)    

x y z  n  Theta 1  Theta 2 Theta 3  Manip 
6.75 0 -29.8  0.25  3.6017 3.0655 5.7658  1709.9 
6.75 13.5 -29.8  0.21  2.1157 3.3018 5.572  1411.7 
6.75 23.5 -29.8  0.00      0 
           
6.75 0 -22.8  0.50  -2.6822 1.9595 1.3277  3400.6 
6.75 13.5 -22.8  0.32  2.1145 2.034 1.4774  2150.4 
6.75 23.5 -22.8  0.61  1.7827 1.9459 1.1789  4090.2 
           
6.75 0 -13.8  0.47  3.5911 1.3889 1.9597  3181.9 
6.75 13.5 -13.8  0.27  2.1149 1.4914 2.1138  1849.6 
6.75 23.5 -13.8  0.64  1.7827 1.3645 1.8008  4309.2 
           
6.75 0 -5.82  0.37  3.5906 0.7761 2.3309  2503.3 
6.75 13.5 -5.82  0.18  2.1157 0.8212 5.5468  1211.9 
6.75 23.5 -5.82  0.55  1.7827 0.8093 2.1409  3725.7 
           
6.75 0 -0.8  0.33  3.6007 3.2401 3.8379  2246.7 
6.75 13.5 -0.8  0.13  2.1157 3.6571 3.5595  878.2 
6.75 23.5 -0.8  0.51  1.7826 3.0423 4.0366  3453.1 
           
6.75 0 6.18  0.35  3.6009 2.6423 3.8725  2338.5 
6.75 13.5 6.18  0.14  2.1157 2.7119 3.6114  978.8 
6.75 23.5 6.18  0.51  1.7819 2.5687 4.0553  3466.6 
           
6.75 0 18.2  0.49  3.6069 1.694 4.3832  3298.9 
6.75 13.5 18.2  0.28  2.1157 1.5904 4.2262  1908.9 
6.75 23.5 18.2  0.64  1.7823 1.7173 4.5318  4345.5 
           
6.75 0 24.18  0.52  3.6067 1.3161 4.7835  3483.6 
6.75 13.5 24.18  0.32  2.1157 1.2315 4.6385  2156.9 
6.75 23.5 24.18  0.64  1.7823 1.3355 4.9287  4319.4 
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Appendix A (Continued) 
 
Manus data from the inverse kinematics program: 
 

 
desired 
position      

required 
angles 
(radians)    

x y z  n  Theta 1  Theta 2 Theta 3  Manip 
0.54 0 -29.8  0.00         0 
0.54 13.5 -29.8  0.12  2.5426 2.8315 6.0801  829.4 
0.54 23.5 -29.8  0.00         0 
           
0.54 0 -22.8  0.65  3.4417 3.1403 5.1939  4366.9 
0.54 13.5 -22.8  0.57  2.5428 3.3105 5.0395  3880.3 
0.54 23.5 -22.8  0.66  2.1224 2.9872 5.3586  4476.6 
           
0.54 0 -13.8  0.72  3.4417 3.2729 4.5771  4894.2 
0.54 13.5 -13.8  0.58  2.5427 3.4566 4.4276  3938.3 
0.54 23.5 -13.8  0.83  2.1224 3.1246 4.7186  5627.5 
           
0.54 0 -5.82  0.66  3.4416 3.1534 4.2512  4426.6 
0.54 13.5 -5.82  0.49  2.5427 3.3437 4.079  3309.9 
0.54 23.5 -5.82  0.79  2.1224 3.016 4.398  5328.9 
           
0.54 0 -0.8  0.62  3.4426 2.9492 4.1506  4176 
0.54 13.5 -0.8  0.45  2.5428 3.1103 3.9655  3006.8 
0.54 23.5 -0.8  0.77  2.1224 2.8226 4.3109  5182.6 
           
0.54 0 6.18  0.63  3.4424 2.5187 4.1778  4255.1 
0.54 13.5 6.18  0.46  2.5428 2.5929 3.998  3104.2 
0.54 23.5 6.18  0.78  2.1224 2.4436 4.3368  5246.4 
           
0.54 0 18.2  0.73  3.4423 1.7166 4.6297  4939.4 
0.54 13.5 18.2  0.59  2.5427 1.7133 4.4822  4014.5 
0.54 23.5 18.2  0.83  2.1224 1.6973 4.7727  5638.9 
           
0.54 0 24.18  0.70  3.4423 1.3326 5.029  4712.8 
0.54 13.5 24.18  0.60  2.5427 1.3325 4.8788  4069.4 
0.54 23.5 24.18  0.75  2.1224 1.3089 5.1839  5035.1 
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Appendix A (Continued) 
 
Manus data from the inverse kinematics program: 
 

 
desired 
position      

required 
angles 
(radians)    

x y z  n  Theta 1  Theta 2 Theta 3  Manip 
0 -6.75 0  0.94  3.7437 2.6441 4.5093  6330.9 
0 -4 0  0.82  3.631 2.7441 4.3607  5506.6 
0 0 0  0.65  3.4311 2.8739 4.1812  4399.2 
0 4 0  0.53  3.1884 2.9772 4.051  3569.8 
0 6.75 0  0.48  3.0035 3.0244 3.9956  3221.3 
0 13.5 0  0.48  2.5636 3.0203 4.0003  3250.6 
0 23.5 0  0.80  2.146 2.7594 4.3389  5376.7 
           
0 -6.75 13.5  0.96  3.7438 1.9343 4.7381  6455.5 
0 -4 13.5  0.86  3.631 1.9773 4.5951  5819 
0 0 13.5  0.73  3.4312 2.0146 4.4311  4902 
0 4 13.5  0.62  3.1888 2.0297 4.3143  4159 
0 6.75 13.5  0.57  3.0035 2.0318 4.2699  3861.3 
0 13.5 13.5  0.58  2.5636 2.0317 4.2738  3887.7 
0 23.5 13.5  0.85  2.146 1.9826 4.5758  5721.1 
           
0 -6.75 16.5  0.94  3.7343 1.7599 4.8583  6329.6 
0 -4 16.5  0.87  3.631 1.793 4.7292  5854.8 
0 0 16.5  0.75  3.4314 1.8213 4.566  5036.8 
0 4 16.5  0.65  3.1888 1.8281 4.456  4360.5 
0 6.75 16.5  0.60  3.0035 1.8267 4.4111  4061 
0 13.5 16.5  0.61  2.5636 1.8274 4.418  4109.5 
0 23.5 16.5  0.85  2.146 1.7973 4.7108  5774.9 
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Appendix A (Continued) 
 
Manus data from the inverse kinematics program: 
 

 
 

desired 
position      

required 
angles 
(radians)    

x y z  n  Theta 1  Theta 2 Theta 3  Manip 
-4 -6.75 13.5  1.00  -2.6301 0.4056 1.3102  7084.4 
-4 -4 13.5  0.95  3.5499 1.9044 4.8259  6754.9 
-4 0 13.5  0.87  3.3766 1.9576 4.6635  6144.6 
-4 4 13.5  0.80  3.1783 1.8014 4.6891  5673.5 
-4 6.75 13.5  0.76  3.0326 1.998 4.5107  5367.5 
-4 13.5 13.5  0.76  2.6809 1.9972 4.513  5379 
-4 23.5 13.5  0.95  2.2967 1.9114 4.8069  6697.7 
           
-4 -6.75 16.5  0.95  -2.6301 0.3921 1.1678  6740.7 
-4 -4 16.5  0.93  3.5499 1.7283 4.9618  6584.4 
-4 0 16.5  0.86  3.3766 1.7764 4.7974  6126 
-4 4 16.5  0.80  3.1783 1.8014 4.6891  5673.5 
-4 6.75 16.5  0.77  3.0326 1.8094 4.6459  5462.6 
-4 13.5 16.5  0.77  2.6809 1.809 4.648  5472.6 
-4 23.5 16.5  0.92  2.2967 1.7345 4.9434  6549 
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Appendix A (Continued) 
 
Raptor data from the inverse kinematics program 

 
desired 
position      

required 
angles 
(radians)    

x y z  n  Theta 1  Theta 2 Theta 3  Manip 
27.54 0 -29.8  0.46  -1.693 2.5314 0.4655  4173.7 
27.54 -13.5 -29.8  0.93  -1.4469 1.5685 0.2696  8474.1 
27.54 -23.5 -29.8  0.70  -1.5647 0.9437 0.3764  6387.8 

           
27.54 0 -22.8  0.58  -1.4343 2.4484 0.3109  5283.4 
27.54 -13.5 -22.8  0.98  -1.2072 1.5686 0.1236  8982.7 
27.54 -23.5 -22.8  0.79  -1.3199 0.9759 0.2267  7172.4 

           
27.54 0 -13.8  0.60  -1.1549 2.434 0.2703  5506.1 
27.54 -13.5 -13.8  0.99  -0.9308 1.5686 0.0846  9056.1 
27.54 -23.5 -13.8  0.80  -1.0427 0.9813 0.1871  7319.6 

           
27.54 0 -5.82  0.53  -0.9725 2.4783 0.3781  4850.6 
27.54 -13.5 -5.82  0.97  -0.7387 1.5686 0.1877  8803.6 
27.54 -23.5 -5.82  0.76  -0.8534 0.9638 0.2923  6889.7 

           
27.54 0 -0.8  0.40  -0.9136 2.5776 0.5226  3661 
27.54 -13.5 -0.8  0.90  -0.6564 1.5685 0.3222  8206.9 
27.54 -23.5 -0.8  0.66  -0.7775 0.9257 0.4314  6013.9 

           
27.54 0 6.18  0.00         0 
27.54 -13.5 6.18  0.66  -0.6097 1.5681 0.6209  6034.5 
27.54 -23.5 6.18  0.35  -0.7659 0.7255 0.7523  3226.4 

           
27.54 0 18.2  0.00         0 
27.54 -13.5 18.2  0.24  -0.4663 1.5664 1.0574  2200.5 
27.54 -23.5 18.2  0.00         0 

           
27.54 0 24.18  0.00         0 
27.54 -13.5 24.18  0.00         0 
27.54 -23.5 24.18  0.00         0 
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Appendix A (Continued) 
 
Raptor data from the inverse kinematics program 

 
desired 
position      

required 
angles 
(radians)    

x y z  n  Theta 1  Theta 2 Theta 3  Manip 
14.04 0 -29.8  0.59  -1.68 2.4414 -0.2922  5389.7 
14.04 -13.5 -29.8  0.78  -1.4375 1.5683 -0.49  7100.6 
14.04 -23.5 -29.8  0.70  -1.5617 0.9426 -0.3781  6374.5 

           
14.04 0 -22.8  0.48  -1.4164 2.5177 -0.4457  4338.6 
14.04 -13.5 -22.8  0.62  -1.1408 1.568 -0.6607  5686.7 
14.04 -23.5 -22.8  0.57  -1.2803 0.8817 -0.5376  5193.9 

           
14.04 0 -13.8  0.44  -0.997 2.5492 -0.4892  3968.5 
14.04 -13.5 -13.8  0.57  -0.7071 1.5679 -0.7108  5238.8 
14.04 -23.5 -13.8  0.53  -0.8531 0.8573 -0.5834  4803.7 

           
14.04 0 -5.82  0.53  -0.6206 2.4775 -0.3766  4861.1 
14.04 -13.5 -5.82  0.70  -0.3628 1.5682 -0.5827  6358.9 
14.04 -23.5 -5.82  0.63  -0.4943 0.9132 -0.4654  5765.2 

           
14.04 0 -0.8  0.62  -0.4458 2.4248 -0.2401  5653.3 
14.04 -13.5 -0.8  0.82  -0.2107 1.5684 -0.4338  7509.8 
14.04 -23.5 -0.8  0.73  -0.3313 0.9566 -0.3244  6696.7 

           
14.04 0 6.18  0.68  -0.3118 2.3929 0.0273  6204 
14.04 -13.5 6.18  0.98  -0.0938 1.5686 -0.1558  8901.6 
14.04 -23.5 6.18  0.83  -0.2051 0.992 -0.0537  7613.5 

           
14.04 0 18.2  0.00          0 
14.04 -13.5 18.2  0.72  -0.1339 1.5682 0.5603  6544.8 
14.04 -23.5 18.2  0.42  -0.2792 0.7875 0.6855  3873.1 

           
14.04 0 24.18  0.00          0 
14.04 -13.5 24.18  0.04  -0.3892 1.5594 1.3784  333.4 
14.04 -23.5 24.18  0.00          0 
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Appendix A (Continued) 
 
Raptor data from the inverse kinematics program 

 
desired 
position      

required 
angles 
(radians)    

x y z  n  Theta 1  Theta 2 Theta 3  Manip 
6.75 0 -29.8  0.36  -1.9533 2.6173 -0.5625  3267.4 
6.75 -13.5 -29.8  0.49  -1.6302 1.5677 -0.7979  4446.1 
6.75 -23.5 -29.8  0.45  -1.7901 0.8063 -0.6616  4098 

           
6.75 0 -22.8  0.06  -1.9416 3.0336 -0.7428  533.7 
6.75 -13.5 -22.8  0.26  -1.3422 1.5666 -1.0329  2394 
6.75 -23.5 -22.8  0.23  -1.5736 0.5819 -0.8592  2137.8 

           
6.75 0 -13.8  0.00       
6.75 -13.5 -13.8  0.19  -0.7349 1.5659 -1.1144  1771.3 
6.75 -23.5 -13.8  0.16  -1.0226 0.4449 -0.9208  1437.6 

           
6.75 0 -5.82  0.23  -0.5673 2.7569 -0.6599  2136.8 
6.75 -13.5 -5.82  0.37  -0.1681 1.5672 -0.92  3348 
6.75 -23.5 -5.82  0.34  -0.3565 0.7095 -0.767  3080.1 

           
6.75 0 -0.8  0.42  -0.2512 2.5614 -0.5041  3833.5 
6.75 -13.5 -0.8  0.56  0.0443 1.5679 -0.7283  5080.6 
6.75 -23.5 -0.8  0.51  -0.1041 0.848 -0.5993  4664.3 

           
6.75 0 6.18  0.63  -0.0526 2.4194 -0.2197  5743.3 
6.75 -13.5 6.18  0.84  0.1802 1.5684 -0.412  7658.6 
6.75 -23.5 6.18  0.75  0.0607 0.9614 -0.3035  6811 

           
6.75 0 18.2  0.44  -0.1134 2.5482 0.4879  3979.6 
6.75 -13.5 18.2  0.92  0.1367 1.5685 0.2903  8374 
6.75 -23.5 18.2  0.68  0.0174 0.9365 0.3982  6242.3 

           
6.75 0 24.18  0.00      0 
6.75 -13.5 24.18  0.46  -0.0151 1.5676 0.8275  4176.8 
6.75 -23.5 24.18  0.02  -0.2994 0.0568 0.9933  154.4 
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Appendix A (Continued) 
 
Raptor data from the inverse kinematics program 

 
desired 
position      

required 
angles 
(radians)    

x y z  n  Theta 1  Theta 2 Theta 3  Manip 
0.54 0 -29.8  0.00       
0.54 -13.5 -29.8  0.29  -1.9646 1.5668 -0.9979  2680.2 
0.54 -23.5 -29.8  0.27  -3.1725 -0.6259 -0.8312  2427.6 

           
0.54 0 -22.8  0.00         0 
0.54 -13.5 -22.8  0.00         0 
0.54 -23.5 -22.8  0.13  -1.8579 0.8172 -2.0035  1169.5 

           
0.54 0 -13.8  0.00         0 
0.54 -13.5 -13.8  0.00         0 
0.54 -23.5 -13.8  0.00         0 

           
0.54 0 -5.82  0.00      0 
0.54 -13.5 -5.82  0.15  0.0356 1.5652 -1.1681  1400.9 
0.54 -23.5 -5.82  0.10  -0.3169 0.3155 -0.9587  934.3 

           
0.54 0 -0.8  0.24  -0.0759 2.7438 -0.6529  2229.4 
0.54 -13.5 -0.8  0.38  0.3155 1.5672 -0.9108  3428.4 
0.54 -23.5 -0.8  0.35  0.1297 0.718 -0.7594  3156.3 

           
0.54 0 6.18  0.55  0.1844 2.4645 -0.3494  5044.8 
0.54 -13.5 6.18  0.72  0.4366 1.5682 -0.5526  6608.3 
0.54 -23.5 6.18  0.65  0.3077 0.9236 -0.4371  5972.8 

           
0.54 0 18.2  0.55  0.1168 2.4655 0.3515  5031.1 
0.54 -13.5 18.2  0.97  0.3477 1.5686 0.1625  8882.5 
0.54 -23.5 18.2  0.77  0.2338 0.9689 0.2665  6996.9 

           
0.54 0 24.18  0.00      0 
0.54 -13.5 24.18  0.63  0.1953 1.568 0.6584  5706.8 
0.54 -23.5 24.18  0.31  0.0305 0.6769 0.7944  2805.5 
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Appendix A (Continued) 
 
Raptor data from the inverse kinematics data 

 
desired 
position      

required 
angles 
(radians)    

x y z  n  Theta 1  Theta 2 Theta 3  Manip 
0 6.75 0  0.00         0 
0 4 0  0.00         0 
0 0 0  0.28  -0.0016 2.7054 -0.6301  2515.7 
0 -4 0  0.38  0.2121 2.3509 -0.75  3471.3 
0 -6.75 0  0.40  0.2933 2.1308 -0.8131  3650.2 
0 -13.5 0  0.40  0.3677 1.5674 -0.8816  3688.5 
0 -23.5 0  0.38  0.2091 0.7842 -0.7479  3462.5 
           
           
0 6.75 13.5  0.00         0 
0 4 13.5  0.27  -0.0454 2.8654 0.1593  2424.5 
0 0 13.5  0.68  0.2157 2.3931 0.034  6200.1 
0 -4 13.5  0.85  0.3358 2.1125 -0.584  7788.9 
0 -6.75 13.5  0.92  0.3861 1.9466 -0.1034  8394.4 
0 -13.5 13.5  0.98  0.4335 1.5686 -0.1491  8920 
0 -23.5 13.5  0.84  0.3223 0.9922 -0.047  7619.8 
           
0 6.75 16.5  0.00         0 
0 4 16.5  0.00         0 
0 0 16.5  0.63  0.1731 2.4205 0.2242  5724.3 
0 -4 16.5  0.84  0.2968 2.1166 0.1304  7664.4 
0 -6.75 16.5  0.92  0.3473 1.9459 0.0853  8425.3 
0 -13.5 16.5  1.00  0.3944 1.5686 0.0399  9106.8 
0 -23.5 16.5  0.82  0.2832 0.9863 0.1419  7454.9 
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Appendix A (Continued) 
 
Raptor data from the inverse kinematics data 

 
desired 
position      

required 
angles 
(radians)    

x y z  n  Theta 1  Theta 2 Theta 3  Manip 
-4 6.75 13.5  0.00      0 
-4 4 13.5  0.28  0.1008 2.8484 0.1243  2595.9 
-4 0 13.5  0.68  0.3569 2.3925 -0.0007  6211.4 
-4 -4 13.5  0.84  0.4837 2.116 -0.123  7681.5 
-4 -6.75 13.5  0.91  0.5277 1.9483 -0.1383  8318 
-4 -13.5 13.5  0.97  0.5754 1.5686 -0.1842  8815.1 
-4 -23.5 13.5  0.83  0.4637 0.9907 -0.0817  7578.5 
           

-4 6.75 16.5  0.00      0 
-4 4 16.5  0.01  -0.0647 3.1311 0.3176  86.1 
-4 0 16.5  0.64  0.306 2.4121 0.1888  5865 
-4 -4 16.5  0.85  0.4284 2.1142 0.0955  7736.5 
-4 -6.75 16.5  0.93  0.4787 1.945 0.0506  8468.4 
-4 -13.5 16.5  1.00  0.5257 1.5686 0.0052  9121 
-4 -23.5 16.5  0.83  0.4149 0.9892 0.1069  7534.7 
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Appendix B: Inverse Kinematic Program 

 

This is a list of all the programs that are called out in the description of the inverse 

kinematics:  

robot.m 

function robot( initial_postion,theta1,theta2,theta3,final_position,steps ) 

% the robot function is the "main" function of this set of functions 

% input is the initial arm angles t1, t2, t3, final endeffector position, xyz, and the number 

of steps to use 

 

 

% set inputs of the initial theta angles in radians 

%     theta1=3.7437; 

%     theta2=2.6441; 

%     theta3=4.5093; 

  

     

    theta1=-2.2234; 

    theta2=-.6703; 

    theta3=2.0199; 

     

% set the number of steps (resolution) to use from initial to final  

%   steps = input('how many intermediate steps?'); 

    steps=15; 

 

% set the tolerance at which the algorithm will loop to before moving on to the next 

waypoint  

% this is a position tolerance x,y,z of the edeffector 

    tolerance = [0.001;0.001;0.001]; 
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Appendix B (Continued) 
 
% set manip_thres which is where the move_arm algorithim will break out of the loop if 

the manipulability becomes too low 

 

% this is an indicator of if the arm is moving toward an singularity and keeps it from 

going into an infinite loop 

    manip_thres = 50; 

 

 % set the desired final position of the endeffector [x;y;z] 

    final_position = input('final position -eg [5;5;5] =  ') %[0;0;0] 

    

 

% Build current_state structure, a structure is used to simplify moving variable data 

between functions 

% set the current state as the initial theta and position 

    initial_theta = [theta1 , theta2, theta3]; 

    initial_position = find_position(initial_theta); 

 

    current_state= struct('xyz',{initial_position},'angles',{initial_theta}) 

     

% calculate array of waypoints which is a set of points on the line that connects the initial 

position point to the final point 

% returns a three dimension waypoint matrix called the_plan 

    disp('calculating plan of attack') 

    the_plan = plot_waypoints(initial_position, final_position, steps); 

     

% move the arm, check amount of error, continue with new waypoint if error < tolerance 

% initialize error = 0 to make a "do loop" like loop 

 

 

% the points array is an array of points traveled to by the arm  
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Appendix B (Continued) 
 

% the angles array is an array of angles traveled to by the arm  

% set the array to "zeros" for more efficient processing     

    points = zeros(3,steps); 

    angles = zeros(steps,3); 

 

% initialize a placeholder variable n for loop counting 

% n is used to count the number of times the arm move is attempted 

    n = 0; 

 

% a for loop from 1 to steps + 1 

    for i = 1:(steps+1) 

        fprintf('Calculating a waypoint, iteration number %i\n', i) 

        next_position =  the_plan(:,:,i); 

        %reset postion error for next loop 

        error = [99;99;99]; 

             

 

            % end the for loop if the manipiablilty goes below the manip_thres 

            if ( manip_thres > (abs(manip(current_state.angles))) ) 

                disp('approaching singularity!'); 

                manip_break=1; 

                break; 

            end 

             

        % loop the move_arm function and update the current_state 

        % if the error is > than the tolerance move_arm and update current_state again 

        while any(error > tolerance) 

            current_state = move_arm(current_state, next_position); 

            error = next_position - current_state.xyz; 

            % current_state.xyz 
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Appendix B (Continued) 
 

            n = n + 1; 

            % update the points array of points plotted 

            % update the angles array of angles plotted 

         

             if any(error > tolerance) 

                 disp('error, retry move'); 

             end 

              

            points(:,n) = [current_state.xyz]; 

            angles(n,:,:) = [current_state.angles]; 

         

 

             

            % keep it from becoming an infinite loop 

            % end the for loop if the manipiablilty goes below the manip_thres 

            if ( manip_thres > (abs(manip(current_state.angles))) ) 

                disp('approaching singularity'); 

                manip_break=1; 

                break; 

            end 

                            

        end % end of the while loop 

                   

    end % end of the for loop 

        

    disp('Waypoints; The steps taken to get from intial to final position') 

    disp('Including all iterative substeps (subloop steps)') 

     

    % display the points array 

    points 
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Appendix B (Continued) 
     

    disp('Waypoint angles; For each of the previous steps') 

 

    % display the angles array 

    angles 

     

    %if (  manip_break ) 

     %   disp('robot.m stopped calculating arm moves due to singularity') 

     %end 

     

    disp('The Absolute Value of Manipulability which is the') 

    disp('Determinate of the Jacobian for the final position is:') 

    % display the absolute value of the manipulability 

    abs(manip(current_state.angles)) 

 

This is the first subroutine called out from robot.m is find_position.m: 

find_position.m 

function position = find_position( theta ) 

% the find_position function takes input of the arm angles and returns the position of the 

endeffector 

 

% set t1,t2,t3 to the current state angles from the input of the structure 

    t1 = theta(1); 

    t2 = theta(2); 

    t3 = theta(3); 

 

% the three position equations specific for each robot arm configuration 

% ------------------ RAPTOR ------------------ % 

%   x=18.38*cos(t1)*sin(t2)*cos(t3)-18.38*sin(t1)*sin(t3)-6.3-27*sin(t1);  

%   y=-18.38*cos(t2)*cos(t3)-13.46;    

%   z=18.38*sin(t1)*sin(t2)*cos(t3)+18.38*cos(t1)*sin(t3)-16.16+27*cos(t1); 
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Appendix B (Continued) 
 

% ------------------ RAPTOR ------------------ % 

 

% ------------------ MANUS ------------------- % 

 x=18.77*cos(t1)*sin(t2)*cos(t3)+18.77*cos(t1)*cos(t2)*sin(t3)+15.04-

5.26*sin(t1)+15.75*cos(t1)*sin(t2); 

y=18.77*sin(t1)*sin(t2)*cos(t3)+18.77*sin(t1)*cos(t2)*sin(t3)+9.97+5.26*cos(t1)+15.75*si

n(t1)*sin(t2);  

 z=18.77*cos(t2)*cos(t3)-18.77*sin(t2)*sin(t3)+1.74+15.75*cos(t2);  

% ------------------ MANUS ------------------- % 

 

% substitute the symbolic variables with the real values and return a xyz position as a 

matrix 

    subs x y z; 

    position = [x;y;z]; 
     

The second called out subroutine is plot_waypoints.m 

plot_waypoints.m 

 

function plot=plot_waypoints(initial_position, final_position, steps) 

% sub function to determine all desired points in straight line between inital_pos and final 

desired 

 

%find out what to increment x vector for 'steps' number of steps 

increment=(final_position-initial_position)/steps; 

 

%i know i want to pre allocate some array space to same time 

x = zeros(3,1,steps); 

 

% plot out points x(:,:,1) is initial point 

% had to use for beginning with 1 due to language constraint 
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Appendix B (Continued) 
 

% actual number of points is steps + 1 

for i = 1:(steps+1) 

    plot(:,:,i) = initial_position+(increment*(i-1)); 

    % returns plot, a 3d array 

end 

The third subroutine called out is manip.m 

manip.m 

function m = manip (theta) 

% this function here determines the "manipulability" of the robot 

% input is the arm angles and outputs the determinate of the equation at the given 

angles 

 

% create three symbolic variables used to calculate the jacobian function 

    syms t1 t2 t3 

 

% the three position equations specific for each robot arm configuration 

 

% ------------------ RAPTOR ------------------ % 

%    x=18.38*cos(t1)*sin(t2)*cos(t3)-18.38*sin(t1)*sin(t3)-6.3-27*sin(t1);  

%    y=-18.38*cos(t2)*cos(t3)-13.46;    

%    z=18.38*sin(t1)*sin(t2)*cos(t3)+18.38*cos(t1)*sin(t3)-16.16+27*cos(t1); 

% ------------------ RAPTOR ------------------ % 

 

% ------------------ MANUS ------------------- % 

 x=18.77*cos(t1)*sin(t2)*cos(t3)+18.77*cos(t1)*cos(t2)*sin(t3)+15.04-

5.26*sin(t1)+15.75*cos(t1)*sin(t2); 

 

y=18.77*sin(t1)*sin(t2)*cos(t3)+18.77*sin(t1)*cos(t2)*sin(t3)+9.97+5.26*cos(t1)+15.75*si

n(t1)*sin(t2);  

 z=18.77*cos(t2)*cos(t3)-18.77*sin(t2)*sin(t3)+1.74+15.75*cos(t2);  
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Appendix B (Continued) 
 

% ------------------ MANUS ------------------- % 

 

% calculate the jacobian matrix of the position equation 

    J = jacobian([x; y; z], [t1 t2 t3]); 

% calculate the determinate of the jacobian matrix 

    J = det(J); 

% prepare to calculate a real number 

% set the symbolic variables to real numbers, the angles of the arm 

    t1 = theta(1); 

    t2 = theta(2); 

    t3 = theta(3); 

 

% substitute the t1,t2,t3 in the equation J and return m 

    m = subs(J); 

     

The fourth called out program is move_arm.m 

move_arm.m   

function new_state = move_arm(current_state, next_position) 

% The move_arm function takes input of the current_state structure and the 

next_position variable 

% returns the new position of the end effector and the arm angles 

 

% calc increment between the current position and the next position  

    increment = next_position - current_state.xyz; 

 

% calc new theta given the current state angles and the incremental position 

    new_theta = get_theta(current_state.angles, increment); 

 

% calc the new position given the newly calculated theta 

    new_position = find_position(new_theta); 



www.manaraa.com

 
 110

Appendix B (Continued) 
 

% return the new position and new thetas via a structure 

    new_state = struct('xyz',{new_position},'angles',{new_theta}); 

     

The fifth and final called out subroutine is get_theta.m 

get_theta.m 

function new_theta=get_theta(theta, increment) 

% the get_theta function takes input of the robot arm angles and the position increment 

% outputs a new set of angles which is used to approximate the new position 

 

% the jacobian matrix and its inverse are calculated symbolically 

    syms t1 t2 t3 

 

% the three position equations specific for each robot arm configuration 

% ------------------ RAPTOR ------------------ % 

 %   x=18.38*cos(t1)*sin(t2)*cos(t3)-18.38*sin(t1)*sin(t3)-6.3-27*sin(t1);  

 %   y=-18.38*cos(t2)*cos(t3)-13.46;    

 %   z=18.38*sin(t1)*sin(t2)*cos(t3)+18.38*cos(t1)*sin(t3)-16.16+27*cos(t1); 

% ------------------ RAPTOR ------------------ % 

 

% ------------------ MANUS ------------------- % 

 x=18.77*cos(t1)*sin(t2)*cos(t3)+18.77*cos(t1)*cos(t2)*sin(t3)+15.04-

5.26*sin(t1)+15.75*cos(t1)*sin(t2); 

 

y=18.77*sin(t1)*sin(t2)*cos(t3)+18.77*sin(t1)*cos(t2)*sin(t3)+9.97+5.26*cos(t1)+15.75*si

n(t1)*sin(t2);  

 z=18.77*cos(t2)*cos(t3)-18.77*sin(t2)*sin(t3)+1.74+15.75*cos(t2);  

% ------------------ MANUS ------------------- % 

 

 

% calculating the jacobian 
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Appendix B (Continued) 
 

    J = jacobian([x; y; z], [t1 t2 t3]); 

 

% calculating the inverse jacobian 

    inverse_jacobian = inv(J); 

 

% calculating the delta theta 

    delta_theta=inverse_jacobian*increment; 

 

% substituting the current angles into the delta_theta equation     

    t1 = theta(1); 

    t2 = theta(2); 

    t3 = theta(3); 

% calculating delta_theta 

    delta_theta = subs(delta_theta); 

     

% calculate the new theta or the intermediate theta 

% delta thetas are summed with the current thetas 

% disp('Waypoint 1 Theta = Original theta + Delta theta') 

    new_theta=[t1+delta_theta(1,1);t2+delta_theta(2,1);t3+delta_theta(3,1)]; 
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